L1 – Increasing / Decreasing	Unit 2
MCV4U	
Jensen	

Increasing: As *x*-values increase, *y*-values are increasing

Decreasing: As *x*-values increase, *y*-values are decreasing

Part 1: Discovery

$$f(x) = \frac{1}{3}x^3 + x^2 - 3x - 4$$

 $f'(x) = x^2 + 2x - 3$

a) Over which values of x is f(x) increasing?

b) Over which values of x is f(x) decreasing?

c) What is true about the graph of f'(x) when f(x) is increasing?

d) What is true about the graph of f'(x) when f(x) is decreasing?

Effects of f'(x) **on** f(x): When the graph of f'(x) is positive, or above the *x*-axis, on an interval, then the function f(x) _______ over that interval. Similarly, when the graph of f'(x) is negative, or below the *x*-axis, on an interval, then the function f(x) _______ over that interval.

If f'(x) > 0 on an interval, f(x) is increasing on that interval

If f'(x) < 0 on an interval, f(x) is decreasing on that interval

Part 2: Properties of graphs of f(x) and f'(x)

A critical number is a value 'a' in the domain where f'(a) = 0 or f'(a) does not exist.

A critical number could yield...

Conclusion:

Local extrema occur when the sign of the derivative CHANGES. If the sign of the derivative does not change, you do not have a local extrema.

A critical number of a function is a value of a in the domain of the function where either f'(a) = 0 or f'(a) does not exist. If a is a critical number, (a, f(a)) is a critical point. Critical points could be local extrema but not necessarily. You must test around the critical points to see if the derivative changes sign. This is called the

 $f(x) = 2x^3 - 9x^2 - 24x - 10$

Critical Numbers: Critical Points:

Sign Chart:

Notice how we could use the graph of the derivative to verify our solution:

Example 1: Determine all local extrema for the function below using critical numbers and the first derivative test. State when the function is increasing or decreasing.

Example 3: Sketch a continuous function for each set of conditions

a) f'(x) > 0 when x < 0, f'(x) < 0 when x > 0, f(0) = 4

b) f'(x) > 0 when x < -1 and when x > 2, f'(x) < 0 when -1 < x < 2, f(0) = 0

Example 4: The temperature of a person with a certain strain of flu can be approximated by the function $T(d) = -\frac{5}{18}d^2 + \frac{15}{9}d + 37$, where 0 < d < 6; *T* represents the person's temperature, in degrees Celsius and *d* is the number of days after the person first shows symptoms. During what interval will the person's temperature be increasing?