```
L1 - Increasing / Decreasing
Unit 2
MCV4U
Jensen
```

Increasing: As x-values increase, y-values are increasing
Decreasing: As x-values increase, y-values are decreasing

Part 1: Discovery

$f(x)=\frac{1}{3} x^{3}+x^{2}-3 x-4$
$f^{\prime}(x)=x^{2}+2 x-3$

a) Over which values of x is $f(x)$ increasing?
b) Over which values of x is $f(x)$ decreasing?
c) What is true about the graph of $f^{\prime}(x)$ when $f(x)$ is increasing?
d) What is true about the graph of $f^{\prime}(x)$ when $f(x)$ is decreasing?

Effects of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ on $\boldsymbol{f}(\boldsymbol{x})$: When the graph of $f^{\prime}(x)$ is positive, or above the x-axis, on an interval, then the function $f(x)$ \qquad over that interval. Similarly, when the graph of $f^{\prime}(x)$ is negative, or below the x-axis, on an interval, then the function $f(x)$ \qquad over that interval.

$$
\begin{aligned}
& \text { If } f^{\prime}(x)>0 \text { on an interval, } f(x) \text { is increasing on that interval } \\
& \text { If } f^{\prime}(x)<0 \text { on an interval, } f(x) \text { is decreasing on that interval }
\end{aligned}
$$

Part 2: Properties of graphs of $f(x)$ and $f^{\prime}(x)$

A critical number is a value ' a ' in the domain where $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
A critical number could yield...

	A local max	A local min	Neither	Max/Min at Cusp
$f(x)$				
$f^{\prime}(x)$				

Conclusion:

Local extrema occur when the sign of the derivative CHANGES. If the sign of the derivative does not change, you do not have a local extrema.

A critical number of a function is a value of a in the domain of the function where either $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist. If a is a critical number, $(a, f(a))$ is a critical point. Critical points could be local extrema but not necessarily. You must test around the critical points to see if the derivative changes sign. This is called the
\qquad _.

Example 1: Determine all local extrema for the function below using critical numbers and the first derivative test. State when the function is increasing or decreasing.
$f(x)=2 x^{3}-9 x^{2}-24 x-10$
Critical Numbers:
Critical Points:

Sign Chart:

Test value for x			
$f^{\prime}(x)$			
$f(x)$			

Notice how we could use the graph of the derivative to verify our solution:

Example 2: For each function, use the graph of $f^{\prime}(x)$ to sketch a possible function $f(x)$.

b)

\square
c)

\square
d)

\square

Example 3: Sketch a continuous function for each set of conditions
a) $f^{\prime}(x)>0$ when $x<0, f^{\prime}(x)<0$ when $x>0, f(0)=4$

\square
b) $f^{\prime}(x)>0$ when $x<-1$ and when $x>2, f^{\prime}(x)<0$ when $-1<x<2, f(0)=0$

Example 4: The temperature of a person with a certain strain of flu can be approximated by the function $T(d)=-\frac{5}{18} d^{2}+\frac{15}{9} d+37$, where $0<d<6 ; T$ represents the person's temperature, in degrees Celsius and d is the number of days after the person first shows symptoms. During what interval will the person's temperature be increasing?

