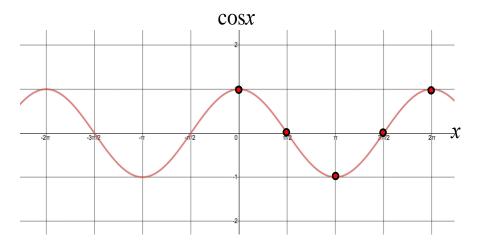

L1 - Derivatives of Sine and Cosine

Unit 3

MCV4U Jensen

Part 1: Investigation

Example 1: Find the derivative of $\sin x$



x	sin x	$\frac{d}{dx}\sin x$
0		
$\frac{\pi}{2}$		
π		
$\frac{3\pi}{2}$ 2π		
2π		

- a) Complete the $\sin x$ column in the table.
- **b)** Estimate the instantaneous rate of change (tangent slope) of $\sin x$ at x=0 using a secant line. Use the interval $\left[\frac{0\pi}{100},\frac{1\pi}{100}\right]$.

- c) Complete the instantaneous rate of change column.
- **d)** What do you notice about the values of $\frac{d}{dx}\sin x$? Plot the values and graph the derivative of $\sin x$. What is the derivative of $\sin x$?

Example 2: Repeat the process to find the derivative of $\cos x$

x	cos x	$\frac{d}{dx}\cos x$
0		
$\frac{\pi}{2}$		
π		
$\frac{3\pi}{2}$		
2π		

- a) Complete the $\cos x$ column in the table.
- **b)** Estimate the instantaneous rate of change (tangent slope) of $\cos x$ at $x = \frac{\pi}{2}$ using a secant line. Use the interval $\left[\frac{50\pi}{100}, \frac{51\pi}{100}\right]$.

- c) Complete the instantaneous rate of change column.
- **d)** What do you notice about the values of $\frac{d}{dx}\cos x$? Plot the values and graph the derivative of $\cos x$. What is the derivative of $\cos x$?

Example 3: Find the derivative of $\tan x$.

Derivatives of Trig Functions:

$$\frac{d}{dx}\sin x = \cos x$$

$$\frac{d}{dx}\cos x = -\sin x$$

$$\frac{d}{dx}\cos x = -\sin x \qquad \qquad \frac{d}{dx}\tan x = \sec^2 x$$

Part 2: Differentiating equations involving trig functions

The rules for differentiation apply to sinusoidal functions. A reminder of these rules is below:

Rule	Derivative
Power Rule	$f'(x) = nx^{n-1}$
If $f(x) = x^n$	
Constant Multiple Rule	$f'(x) = c \cdot g'(x)$
If $f(x) = c \cdot g(x)$ where c is a constant	
Sum Rule	h'(x) = f'(x) + g'(x)
If $h(x) = f(x) + g(x)$	
Difference Rule	h'(x) = f'(x) - g'(x)
If $h(x) = f(x) - g(x)$	
Product Rule	h'(x) = f'(x)g(x) + f(x)g'(x)
If $h(x) = f(x)g(x)$	
Quotient Rule	$h'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{[g(x)]^2}$
	$[g(x)]^2$
If $h(x) = f(x) \div g(x)$	
Power of a Function Rule	$h'(x) = n[f(x)]^{n-1} \times f'(x)$
If $h(x) = (f(x))^n$	
Chain Rule	$h'(x) = f'[g(x)] \times g'(x)$
If $h(x) = f(g(x))$	

Example 4: Differentiate each of the following

$$a) y = 2 \sin x$$

b)
$$f(x) = -3\cos x$$

c)
$$y = 4 \tan x$$

$$a) y = \sin x + \cos x$$

b)
$$y = 2 \cos x - 4 \sin x$$

Example 6: Find the slope of the tangent line to the graph of $f(x) = 3 \sin x$ at the point where $x = \frac{\pi}{4}$

Remember special triangles:

Example 7: Find the equation of the tangent line to the curve $f(x) = -2 \sin x$ at the point where $x = \frac{\pi}{6}$.