Part 1: What is a Vector?

A \qquad quantity describes magnitude or size only. It does NOT include a direction.

Examples: temperature ($-5^{\circ} \mathrm{C}$), distance (5 km), speed ($100 \mathrm{~km} / \mathrm{h}$), mass (10 kg)

A \qquad is a mathematical quantity having both MAGNITUDE and DIRECTION

Examples: velocity ($80 \mathrm{~km} / \mathrm{h}$ west), force (10 N downward)
Vectors are represented with directed line segments. A directed line segment has a \qquad , called its magnitude, and a \qquad indicated by an arrowhead.

Vector $\overrightarrow{A B}$ has a starting point at A and ends at point B . It could also be expressed using a single letter \vec{v}

The magnitude, or size, of a vector is designated using absolute value brackets. The magnitude of vector $\overrightarrow{A B}$ or \vec{v} is written as $|\overrightarrow{A B}|$ or $|\vec{v}|$. Magnitude is always a non-negative value.

A vectors direction can be expressed in several different ways:
i) As an angle moving counter-clockwise with respect to a horizontal line

Diagram	Description of Direction					
14 cm						

ii) A True Bearing is a compass measurement where the angle is measured from North in a clockwise direction.

Diagram	Description of Direction	

iii) A Quadrant Bearing is a measurement between 0° and 90° east or west of the north-south line.

| Diagram | Description of Direction |
| :--- | :--- | :--- |
| | |

Example 1: Convert the following
a) Write the true bearing 150° as a quadrant bearing.
b) Write the quadrant bearing $\mathrm{N} 50^{\circ} \mathrm{W}$ as a true bearing.

Part 2: Equivalent and Opposite Vectors

\qquad : Vectors that have the same OR opposite direction, but not necessarily the same magnitude.

$$
\overrightarrow{A B} \| \overrightarrow{D C}
$$

And
$\overrightarrow{A B} \| \overrightarrow{C D}$

does NOT matter.
Notice that any of these vectors could be translated to be coincident with either of the other two.
$\vec{p}=\vec{q}=\vec{r}$
:Vectors that have the same magnitude AND direction. The location of the vectors

Or
$\overrightarrow{A B}=\overrightarrow{C D}=\overrightarrow{E F}$

:Vectors that have the same magnitude but point in opposite directions.
Notice that $|\overrightarrow{A B}|=|\overrightarrow{B A}|$ but they point in opposite Directions. Therefore $\overrightarrow{A B} \neq \overrightarrow{B A}$.

You can write an expression for an opposite vector by Placing a negative sign in front of it or by reversing the order of the letters. The opposite of $\overrightarrow{A B}$ can be written as $-\overrightarrow{A B}$ or $\overrightarrow{B A}$

An equivalent expression between the two vectors shown could be $\overrightarrow{A B}=-\overrightarrow{B A}$

Example 2: Given $\overrightarrow{A B}$, draw an equivalent vector $\overrightarrow{C D}$ and an opposite vector $\overrightarrow{E F}$. Write equations to show the relationship between the vectors.

