Part 1: Remembering How to Prove Trig Identities

Fundamental Trigonometric Identities		
Reciprocal Identities	Quotient Identities	Pythagorean Identities
$\csc \theta=\frac{1}{\sin \theta}$	$\frac{\sin \theta}{\cos \theta}=\tan \theta$	
$\sec \theta=\frac{1}{\cos \theta}$	$\sin ^{2} \theta+\cos ^{2} \theta=1$	
$\cot \theta=\frac{1}{\tan \theta}$	$\frac{\cos \theta}{\sin \theta}=\cot \theta$	

Tips and Tricks		
Reciprocal Identities	Quotient Identities	Pythagorean Identities
Square both sides $\begin{aligned} & \csc ^{2} \theta=\frac{1}{\sin ^{2} \theta} \\ & \sec ^{2} \theta=\frac{1}{\cos ^{2} \theta} \\ & \cot ^{2} \theta=\frac{1}{\tan ^{2} \theta} \end{aligned}$	Square both sides $\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\tan ^{2} \theta$ $\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\cot ^{2} \theta$	Rearrange the identity $\begin{aligned} & \sin ^{2} \theta=1-\cos ^{2} \theta \\ & \cos ^{2} \theta=1-\sin ^{2} \theta \end{aligned}$ Divide by either $\sin ^{2} \theta$ or $\sin ^{2} \theta$ $\begin{gathered} 1+\cot ^{2} \theta=\csc ^{2} \theta \\ \tan ^{2} \theta+1=\sec ^{2} \theta \end{gathered}$
General tips for proving ide	Terms may NOT cro to $\sin \theta$ or $\cos \theta$ being added or subtr $\begin{aligned} & \rightarrow 1-\sin ^{2} \theta=(1 \\ & { }^{6} \theta=\left(\sin ^{2} \theta\right)^{3} \end{aligned}$	en sides. a common denominator and $(1+\sin \theta)$

Example 1: Prove each of the following identities
a) $\tan ^{2} x+1=\sec ^{2} x$

$$
\begin{aligned}
& \text { LS=RS }
\end{aligned}
$$

b) $\cos ^{2} x=(1-\sin x)(1+\sin x)$

c) $\frac{\sin ^{2} x}{1-\cos x}=1+\cos x$

LS=RS

Part 2: Transformation Identities

Because of their periodic nature, there are many equivalent trigonometric expressions .
Horizontal translations of $\frac{\pi}{2}$ that involve both a sine function and a cosine function can be used to obtain two equivalent functions with the same graph.

Translating the cosine function $\frac{\pi}{2}$ to the right, $f(x)=\cos \left(x-\frac{\pi}{2}\right)$ results in the graph of the sine function, $f(x)=\sin x$.

Similarly, translating the sine function $\frac{\pi}{2}$ to the left, $f(x)=\sin \left(x+\frac{\pi}{2}\right)$ results in the graph of the cosine function, $f(x)=\cos x$.

Transformation Identities

$$
\cos \left(x-\frac{\pi}{2}\right)=\sin x \quad \sin \left(x+\frac{\pi}{2}\right)=\cos x
$$

Part 3: Even/Odd Function Identities

Remember that $\cos \boldsymbol{x}$ is an even function. Reflecting its graph across the y-axis results in two equivalent functions with the same graph.

$\sin x$ and $\tan x$ are both odd functions. They have rotational symmetry about the origin.

Even/Odd Identities

$$
\cos (-x)=\cos x \quad \sin (-x)=-\sin x \quad \tan (-x)=-\tan x
$$

Part 4: Co-function Identities

The co-function identities describe trigonometric relationships between complementary angles in a right triangle.

| $\cos \left(\frac{\pi}{2}-x\right)=\sin x$ | $\sin \left(\frac{\pi}{2}-x\right)=\cos x$ |
| :--- | :--- | :--- |

We could identify other equivalent trigonometric expressions by comparing principle angles drawn in standard		
position in quadrants II, III, and IV with their related acute (reference) angle in quadrant I.		
Principle in Quadrant II	Principle in Quadrant III	Principle in Quadrant IV
$\sin (\pi-x)=\sin x$	$\sin (\pi+x)=-\sin x$	$\sin (2 \pi-x)=-\sin x$

Example 2: Prove both co-function identities using transformation identities
a) $\cos \left(\frac{\pi}{2}-x\right)=\sin x$
b) $\sin \left(\frac{\pi}{2}-x\right)=\cos x$

Part 5: Apply the Identities

Example 3: Given that $\sin \frac{\pi}{5} \cong 0.5878$, use equivalent trigonometric expressions to evaluate the following:
a) $\cos \frac{3 \pi}{10}$

$$
=\sin \left(\frac{5 \pi}{10}-\frac{3 \pi}{10}\right)
$$

$$
=\sin \left(\frac{2 \pi}{10}\right)
$$

$$
=\sin \left(\frac{\pi}{5}\right)
$$

$$
\cong 0.5878
$$

$$
\begin{aligned}
& \text { b) } \cos \frac{7 \pi}{10} \\
& =\sin \left(\frac{\pi}{2}-\frac{7 \pi}{10}\right) \\
& =\sin \left(\frac{5 \pi}{10}-\frac{7 \pi}{10}\right) \\
& =\sin \left(-\frac{2 \pi}{10}\right) \\
& =-\sin \left(\frac{\pi}{5}\right) \\
& \cong-0.5878
\end{aligned}
$$

