• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
L1 – 6.1/6.2 – Intro to Logarithms and Review of Expone	entials
MHF4U	
Jensen	

In this section you will learn about how a logarithmic function is the inverse of an exponential function. You will also learn how to express exponential equations in logarithmic form.

Part 1: Review of Exponential Functions

Equation: $y = a(b)^x$

```
a = initial amount
```

```
b = \text{growth} (b > 1) \text{ or decay} (0 < b < 1) \text{ factor}
```

y =future amount

x = number of times a has increased or decreased

To calculate x, use the equation: $x = \frac{total time}{time it takes for one growth or decay period}$

Example 1: An insect colony has a current population of 50 insects. Its population doubles every 3 days.

a) What is the population after 12 days?

$$y = 50(2)^{\frac{12}{3}}$$

 $y = 50(2)^4$
 $y = 800$

b) How long until the population reaches 25 600?

 $25 \ 600 = 50(2)^{\frac{t}{3}}$ $512 = 2^{\frac{t}{3}}$ $\log 512 = \log 2^{\frac{t}{3}}$ $\log 512 = \left(\frac{t}{3}\right)\log 2$ $\frac{\log 512}{\log 2} = \frac{t}{3}$ $9 = \frac{t}{3}$ $t = 27 \ \text{days}$

Part 2: Review of Inverse Functions

Inverse of a function:

• The inverse of a function f is denoted as f^{-1}

• The function and its inverse have the property that if f(a) = b, then $f^{-1}(b) = a$

• So if f(5) = 13, then $f^{-1}(13) = 5$

 \cdot More simply put: The inverse of a function has all the same points as the original function, except that the *x*'s and *y*'s have been reversed.

The **graph** of $f^{-1}(x)$ is the graph of f(x) reflected in the line y = x. This is true for all functions and their inverses.

Example 2: Determine the equation of the inverse of the function $f(x) = 3(x-5)^2 + 1$

 $y = 3(x-5)^2 + 1$

 $x = 3(y-5)^2 + 1$

 $\frac{x-1}{3} = (y-5)^2$

$$\pm \sqrt{\frac{x-1}{3}} = y - 5$$

$$5 \pm \sqrt{\frac{x-1}{3}} = y$$

Part 3: Review of Exponent Laws

Name	Rule
Product Rule	$x^a \cdot x^b = x^{a+b}$
Quotient Rule	$\frac{x^a}{x^b} = x^{a-b}$
Power of a Power Rule	$(x^a)^b = x^{a \times b}$
Negative Exponent Rule	$x^{-a} = \frac{1}{x^a}$
Exponent of Zero	$x^0 = 1$

Algebraic Method for finding the inverse:
1. Replace $f(x)$ with "y"
2. Switch the x and y variables
3. Isolate for <i>y</i>
4. replace y with $f^{-1}(x)$

Part 4: Inverse of an Exponential Function

Example 3:

a) Find the equation of the inverse of $f(x) = 2^x$.

$$y = 2^{x}$$

$$x = 2^{y}$$

$$\log x = \log 2^{y}$$

$$\log x = y \log 2$$

$$y = \frac{\log x}{\log 2}$$
This step uses the 'change of base' formula that we will cover later in the unit.
$$y = \log_{2} x$$

$$f^{-1}(x) = \log_{2} x$$

b) Graph the both f(x) and $f^{-1}(x)$.

$f(x) = 2^x$	
x	у
-2	0.25
-1	0.5
0	1
1	2
2	4

$f^{-1}(x) = log_2 x$		
x	y	
0.25	-2	
0.5	-1	
1	0	
2	1	
4	2	

Note: just swap x and y coordinates to get key points for the inverse of a function. The graph should appear to be a reflection across the line y = x.

 $\log_b m = \frac{\log m}{\log b}$

c) Complete the chart of key properties for both functions

$y = 2^x$	$y = \log_2 x$
<i>x</i> -int: none	<i>x</i> -int: (1, 0)
<i>y</i> -int: (0, 1)	<i>y</i> -int: none
Domain: $\{X \in \mathbb{R}\}$	Domain: $\{X \in \mathbb{R} x > 0\}$
Range: $\{Y \in \mathbb{R} y > 0\}$	Range: $\{Y \in \mathbb{R}\}$
Asymptote: horizontal asymptote at $y = 0$	Asymptote: vertical asymptote at $x = 0$

Part 5: What is a Logarithmic Function?

The logarithmic function is the **inverse** of the exponential function with the same base.

The **logarithmic function** is defined as $y = \log_b x$, or y equals the logarithm of x to the base b.

The function is defined only for $b > 0, b \neq 1$

In this notation, \underline{y} is the exponent to which the base, \underline{b} , must be raised to give the value of \underline{x} .

In other words, the solution to a logarithm is always an **EXPONENT**.

The logarithmic function is most useful for solving for unknown exponents

<u>Common logarithms</u> are logarithms with a base of 10. It is not necessary to write the base for common logarithms: $\log x$ means the same as $\log_{10} x$

Part 6: Writing Equivalent Exponential and Logarithmic Expressions

Exponential equations can be written in logarithmic form, and vice versa

 $y = b^x \rightarrow \mathbf{x} = \log_b y$

 $y = \log_b x \rightarrow x = b^y$

Example 4: Rewrite each equation in logarithmic form

a) $16 = 2^4$	b) $m = n^{3}$	c) $3^{-2} = \frac{1}{9}$
$\log_2 16 = 4$	$\log_n m = 3$	$\log_3\left(\frac{1}{9}\right) = -2$

Example 5: Write each logarithmic equation in exponential form

a) $\log_4 64 = 3$ $4^3 = 64$ b) $y = \log x$ $10^y = x$

Note: because there is no base written, this is understood to be the common logarithm of x.

Part 7: Evaluate a Logarithm

Example 6: Evaluate each logarithm without a calculator

Rule: if
$$x^a = x^b$$
, then $a = b$
 Rule: $\log_a(a^b) = b$

 a) $y = \log_3 81$
 a) $y = \log_4 64$
 $3^y = 81$
 $y = \log_4(4^3)$
 $3^y = 3^4$
 $y = 3$
 $y = 4$
 $y = 3$

Note: either of the rules presented above are appropriate to use for evaluating logarithmic expressions

b)
$$y = \log\left(\frac{1}{100}\right)$$

 $10^{y} = \frac{1}{100}$
 $10^{y} = \left(\frac{1}{10}\right)^{2}$
 $10^{y} = 10^{-2}$
 $y = \log_{2}\left(\frac{1}{2}\right)^{3}$
 $y = \log_{2} 2^{-3}$
 $y = -3$
 $y = -2$