In this section you will learn about how a logarithmic function is the inverse of an exponential function. You will also learn how to express exponential equations in logarithmic form.

Part 1: Review of Exponential Functions

Equation: $y=a(b)^{x}$
$a=$ initial amount
$b=$ growth $(b>1)$ or decay $(0<b<1)$ factor
$y=$ future amount
$x=$ number of times a has increased or decreased
To calculate x, use the equation: $x=\frac{\text { total time }}{\text { time it takes for one growth or decay period }}$
Example 1: An insect colony has a current population of 50 insects. Its population doubles every 3 days.
a) What is the population after 12 days?
$y=50(2)^{\frac{12}{3}}$
$y=50(2)^{4}$
$y=800$
b) How long until the population reaches 25 600?
$25600=50(2)^{\frac{t}{3}}$
$512=2^{\frac{t}{3}}$
$\log 512=\log 2^{\frac{t}{3}}$
$\log 512=\left(\frac{t}{3}\right) \log 2$
$\frac{\log 512}{\log 2}=\frac{t}{3}$
$9=\frac{t}{3}$
$t=27$ days

Part 2: Review of Inverse Functions

Inverse of a function:

- The inverse of a function f is denoted as f^{-1}
- The function and its inverse have the property that if $\mathrm{f}(a)=b$, then $f^{-1}(b)=a$
- So if $f(5)=13$, then $f^{-1}(13)=5$
- More simply put: The inverse of a function has all the same points as the original function, except that the x 's and y 's have been reversed.

The graph of $f^{-1}(x)$ is the graph of $f(x)$ reflected in the line $y=x$. This is true for all functions and their inverses.

Example 2: Determine the equation of the inverse of the function $f(x)=3(x-5)^{2}+1$
$y=3(x-5)^{2}+1$
$x=3(y-5)^{2}+1$
$\frac{x-1}{3}=(y-5)^{2}$

Algebraic Method for finding the inverse:

1. Replace $f(x)$ with " y "
2. Switch the x and y variables
3. Isolate for y
4. replace y with $f^{-1}(x)$
$\pm \sqrt{\frac{x-1}{3}}=y-5$
$5 \pm \sqrt{\frac{x-1}{3}}=y$

Equation of inverse:

$$
f^{-1}(x)=5 \pm \sqrt{\frac{x-1}{3}}
$$

Part 3: Review of Exponent Laws

Name	Rule
Product Rule	$x^{a} \cdot x^{b}=x^{a+b}$
Quotient Rule	$\frac{x^{a}}{x^{b}}=x^{a-b}$
Power of a Power Rule	$\left(x^{a}\right)^{b}=x^{a \times b}$
Negative Exponent Rule	$x^{-a}=\frac{1}{x^{a}}$
Exponent of Zero	$x^{0}=1$

Part 4: Inverse of an Exponential Function

Example 3:

a) Find the equation of the inverse of $f(x)=2^{x}$.
$y=2^{x}$
$x=2^{y}$
$\log x=\log 2^{y}$
$\log x=y \log 2$
$y=\frac{\log x}{\log 2}$
$y=\log _{2} x$
This step uses the 'change of base' formula that we will cover later in the unit.

$$
\log _{b} m=\frac{\log m}{\log b}
$$

$f^{-1}(x)=\log _{2} x$
b) Graph the both $f(x)$ and $f^{-1}(x)$.

$f(x)=2^{x}$	
x	y
-2	0.25
-1	0.5
0	1
1	2
2	4

$f^{\mathbf{1}}(\boldsymbol{x})=\log _{2} \boldsymbol{x}$	
\boldsymbol{x}	\boldsymbol{y}
0.25	-2
0.5	-1
1	0
2	1
4	2

Note: just swap x and y coordinates to get key points for the inverse of a function. The graph should appear to be a reflection across the line $y=x$.

c) Complete the chart of key properties for both functions

$\boldsymbol{y = \mathbf { 2 } ^ { \boldsymbol { x } }}$	$\boldsymbol{y}=\log _{\mathbf{2}} \boldsymbol{x}$
x-int: none	x-int: $(1,0)$
y-int: $(0,1)$	y-int: none
Domain: $\{X \in \mathbb{R}\}$	Domain: $\{X \in \mathbb{R} \mid x>0\}$
Range: $\{Y \in \mathbb{R} \mid y>0\}$	Range: $\{Y \in \mathbb{R}\}$
Asymptote: horizontal asymptote at $y=0$	Asymptote: vertical asymptote at $x=0$

The logarithmic function is the inverse of the exponential function with the same base.

The logarithmic function is defined as $y=\log _{b} x$, or y equals the logarithm of x to the base b.
The function is defined only for $\underline{b>0, b \neq 1}$
In this notation, \boldsymbol{y} is the exponent to which the base, \underline{b}, must be raised to give the value of \underline{x}.

In other words, the solution to a logarithm is always an EXPONENT.

The logarithmic function is most useful for solving for unknown exponents
Common logarithms are logarithms with a base of 10 . It is not necessary to write the base for common logarithms: $\log x$ means the same as $\log _{10} x$

Part 6: Writing Equivalent Exponential and Logarithmic Expressions

Exponential equations can be written in logarithmic form, and vice versa
$y=b^{x} \rightarrow \mathrm{x}=\log _{b} y$
$y=\log _{b} x \rightarrow x=b^{y}$

Example 4: Rewrite each equation in logarithmic form
a) $16=2^{4}$
b) $m=n^{3}$
c) $3^{-2}=\frac{1}{9}$
$\log _{2} 16=4$
$\log _{n} m=3$
$\log _{3}\left(\frac{1}{9}\right)=-2$

Example 5: Write each logarithmic equation in exponential form
a) $\log _{4} 64=3$
b) $y=\log x$
$4^{3}=64$
$10^{y}=x$

Note: because there is no base written, this is understood to be the common logarithm of x.

Example 6: Evaluate each logarithm without a calculator

Rule: if $x^{a}=x^{b}$, then $a=b$
a) $y=\log _{3} 81$
$3^{y}=81$
$3^{y}=3^{4}$
$y=4$

Rule: $\log _{a}\left(a^{b}\right)=b$
a) $y=\log _{4} 64$
$y=\log _{4}\left(4^{3}\right)$
$y=3$

Note: either of the rules presented above are appropriate to use for evaluating logarithmic expressions
b) $y=\log \left(\frac{1}{100}\right)$

$$
10^{y}=\frac{1}{100}
$$

$$
10^{y}=\left(\frac{1}{10}\right)^{2}
$$

$$
10^{y}=10^{-2}
$$

$$
\begin{aligned}
& \text { c) } y=\log _{2}\left(\frac{1}{8}\right) \\
& y=\log _{2}\left(\frac{1}{2}\right)^{3} \\
& y=\log _{2} 2^{-3} \\
& y=-3
\end{aligned}
$$

$$
y=-2
$$

