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In advanced functions, you should have been introduced to the idea that the instantaneous rate of change is
represented by the slope of the tangent at a point on the curve. You also learned that you can determine this
value by taking the derivative of the function using the Newton Quotient.

Newton Quotient Example: Newton’s Quotient:

a) Find the equation of the derivative of f(x) = 3x2 + 2x + 4
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b) Calculate f'(5). What does it represent? " (5,ﬂ5))/
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f1(5) = 6(5) +2 \ . /
f'(5) = 32 \ . /
This tells us that the instantaneous rate of change of the original function s /
when x = 5 is 32. Graphically speaking, this means the slope of the ,/
tangent line drawn on the original function at (5, f(5)) is 32. 0




Mathematicians have derived a set of rules for calculating derivatives that make this process more efficient.

Ifh(x) = f(x) + g(x)

() =f'(x)+9'(x)

Rule Derivative Example
Constant Rule f(x) =87
fix)=0 ffx) =0
If f(x) = ¢ where c is a constant
Power Rule flx) =x5
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Sum Rule h(x) = x5 + x*

h'(x) = 5x* + 4x3

Difference Rule

If h(x) = f(x) — g(x)

h'(x) = f"(x)—g'(x)

h(x) = x> — x*
h'(x) = 5x* — 4x3

Proof of Power Rule:
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Use Binomial Theorem:
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Example 1: Determine the equation of the derivative of each of the following functions:

a) f(x) = 3x°
f'(x) = 15x*
d)y =3x
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b) f(x) =71
f'x)=0

Example 2: Differentiate each function

a)y=5x°—4x3+6

y' =30x>—12x2+0

y' =30x° — 12x2

c)glx)=R2x—-3)(x+1)

gx) =2x*—-x-3
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Example 3: Determine an equation for the tangent to the curve f(x) = 4x3 + 3x? —5atx = —1.

Point on the tangent line:
f(=1) =4(-1)® +3(-1)* -5
f(-1)=-6

(=1,-6)

Equation of tangent line:

y=mx-+b
—-6=6(-1)+b
b=0

y = 6x

Slope of tangent line:
f'(x) = 12x? + 6x

f'(=1D =12(-1*+6(-1)
ff(=1) =6

Slope of the tangent is 6

Remember: The equation of
the derivative tells you the
slope of the tangent to the
original function.

Example 4: Determine the point(s) on the graph of y = x?(x + 3) where the slope of the tangent is 24.

y = x3 + 3x?
d
—y=3x2+6x
dx
24 = 3x% + 6x

0 =3x%+6x—24
0=3(x%+2x—28)

0=x+4)(x—-2)

Now find y-coordinates of points:

Point 1:

y = (=4 +3(~4)°

30

Point 2:
y=(2)*+3(2)
y =20

(2,20)




