L1 – Derivative of a Polynomial Functions MCV4U Jensen

In advanced functions, you should have been introduced to the idea that the instantaneous rate of change is represented by the slope of the tangent at a point on the curve. You also learned that you can determine this value by taking the derivative of the function using the Newton Quotient.

4

Newton Quotient Example:

a) Find the equation of the derivative of $f(x) = 3x^2 + 2x + 4$

$$f'(x) = \lim_{h \to 0} \frac{3(x+h)^2 + 2(x+h) + 4 - (3x^2 + 2x + 4)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{3(x^2 + 2xh + h^2) + 2x + 2h + 4 - 3x^2 - 2x - 4}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{3x^2 + 6xh + 3h^2 + 2x + 2h + 4 - 3x^2 - 2x - 4}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{6xh + 3h^2 + 2h}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{h(6x + 3h + 2)}{h}$$

$$f'(x) = 6x + 3(0) + 2$$

b) Calculate f'(5). What does it represent?

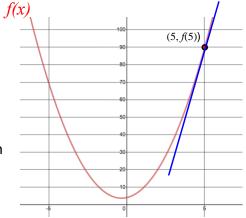
f'(5) = 6(5) + 2

f'(x) = 6x + 2

$$f'(5) = 32$$

This tells us that the instantaneous rate of change of the original function when x = 5 is 32. Graphically speaking, this means the slope of the tangent line drawn on the original function at (5, f(5)) is 32.

Newton's Quotient: $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$



Mathematicians have derived a set of rules for calculating derivatives that make this process more efficient.

Rule	Derivative	Example
Constant Rule		f(x) = 87
	f'(x) = 0	f'(x) = 0
If $f(x) = c$ where c is a constant		
Power Rule		$f(x) = x^5$
	$f'(x) = nx^{n-1}$	$f'(x) = 5x^4$
If $f(x) = x^n$		
Constant Multiple Rule		$f(x) = 3x^5$
	$f'(x) = c \cdot g'(x)$	$f'(x) = 3 \cdot 5x^4$
If $f(x) = c \cdot g(x)$ where c is a	f(x) = c g(x)	$f'(x) = 15x^4$
constant		
Sum Rule		$h(x) = x^5 + x^4$
	h'(x) = f'(x) + g'(x)	$h'(x) = 5x^4 + 4x^3$
If $h(x) = f(x) + g(x)$		
Difference Rule		$h(x) = x^5 - x^4$
	h'(x) = f'(x) - g'(x)	$h'(x) = 5x^4 - 4x^3$
If $h(x) = f(x) - g(x)$		

Proof of Power Rule:

$$\frac{d}{dx}x^{n} = \lim_{h \to 0} \frac{(x+h)^{n} - x^{n}}{h}$$

$$\frac{d}{dx}x^{n} = \lim_{h \to 0} \frac{\binom{n}{0}x^{n}h^{0} + \binom{n}{1}x^{n-1}h^{1} + \binom{n}{2}x^{n-2}h^{2} + \dots + \binom{n}{n}x^{0}h^{n} - x^{n}}{h}$$

$$\frac{d}{dx}x^{n} = \lim_{h \to 0} \frac{\binom{n}{1}x^{n-1}h^{1} + \binom{n}{2}x^{n-2}h^{2} + \dots + \binom{n}{n}x^{0}h^{n}}{h}$$

$$\frac{d}{dx}x^{n} = \lim_{h \to 0} \frac{h[\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}h^{1} + \dots + \binom{n}{n}x^{0}h^{n-1}]}{h}$$

$$\frac{d}{dx}x^{n} = \lim_{h \to 0} \binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}h^{1} + \dots + \binom{n}{n}x^{0}h^{n-1}$$

$$\frac{d}{dx}x^{n} = \binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}0^{1} + \dots + \binom{n}{n}x^{0}0^{n-1}$$

$$\frac{d}{dx}x^{n} = nx^{n-1}$$

Example 1: Determine the equation of the derivative of each of the following functions:

a)
$$f(x) = 3x^5$$

 $f'(x) = 15x^4$
b) $f(x) = 71$
 $f'(x) = 0$
 $f(x) = x^{\frac{1}{2}}$
 $f'(x) = \frac{1}{2}x^{\frac{1}{2}-1}$
 $f'(x) = \frac{1}{2}x^{-\frac{1}{2}}$
 $f'(x) = \frac{1}{2}\sqrt{x}$

d)
$$y = \sqrt[3]{x}$$

 $y = x^{\frac{1}{3}}$
 $y' = \frac{1}{3}x^{\frac{1}{3}-1}$
 $y' = \frac{1}{3}x^{-\frac{2}{3}}$
 $y' = \frac{1}{3x^{\frac{2}{3}}}$
e) $y = \frac{1}{x}$
 $y = x^{-1}$
 $y' = -1x^{-2}$
 $y' = -1x^{-2}$
 $y' = \frac{-1}{x^{2}}$
 $\frac{dy}{dx} = 5x^{-6}$
 $y' = \frac{1}{x^{\frac{2}{3}}}$
 $\frac{dy}{dx} = \frac{5}{x^{6}}$

Example 2: Differentiate each function

a)
$$y = 5x^{6} - 4x^{3} + 6$$

 $y' = 30x^{5} - 12x^{2} + 0$
 $y' = 30x^{5} - 12x^{2}$
 $y' = 30x^{5} - 12x^{2}$
 $f'(x) = -15x^{4} + 4x^{-\frac{1}{2}} - 0$
 $f'(x) = -15x^{4} + \frac{4}{\sqrt{x}}$

c)
$$g(x) = (2x - 3)(x + 1)$$

 $g(x) = 2x^2 - x - 3$
 $g'(x) = 4x - 1$
 $h(x) = \frac{-8x^6}{4x^5} + \frac{8x^2}{4x^5}$
 $h(x) = -2x + 2x^{-3}$
 $h'(x) = -2 - 6x^{-4}$
 $h'(x) = -2 - \frac{6}{x^4}$

Example 3: Determine an equation for the tangent to the curve $f(x) = 4x^3 + 3x^2 - 5$ at x = -1.

Point on the tangent line:

Slope of tangent line:

 $f(-1) = 4(-1)^3 + 3(-1)^2 - 5$ f(-1) = -6(-1, -6)

 $f'(x) = 12x^2 + 6x$ $f'(-1) = 12(-1)^2 + 6(-1)$ f'(-1) = 6Slope of the tangent is 6 **Remember:** The equation of the derivative tells you the slope of the tangent to the original function.

Equation of tangent line:

y = mx + b-6 = 6(-1) + bb = 0y = 6x

Example 4: Determine the point(s) on the graph of $y = x^2(x + 3)$ where the slope of the tangent is 24.

$$y = x^{3} + 3x^{2}$$

$$\frac{dy}{dx} = 3x^{2} + 6x$$

$$24 = 3x^{2} + 6x$$

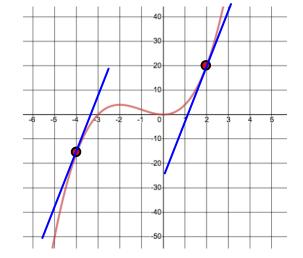
$$0 = 3x^{2} + 6x - 24$$

$$0 = 3(x^{2} + 2x - 8)$$

$$0 = (x + 4)(x - 2)$$

$$x_{1} = -4$$

$$x_{2} = 2$$



Now find *y*-coordinates of points:

Point 1:Point 2: $y = (-4)^3 + 3(-4)^2$ $y = (2)^3 + 3(2)^2$ y = -16y = 20(-4, 16)(2, 20)