```
L1 - Increasing / Decreasing
Unit 2
MCV4U
Jensen
```

Increasing: As x-values increase, y-values are increasing
Decreasing: As x-values increase, y-values are decreasing

Part 1: Discovery

$f(x)=\frac{1}{3} x^{3}+x^{2}-3 x-4$
$f^{\prime}(x)=x^{2}+2 x-3$

a) Over which values of x is $f(x)$ increasing?
$x<-3$ and $x>1$
b) Over which values of x is $f(x)$ decreasing?
$-3<x<1$
c) What is true about the graph of $f^{\prime}(x)$ when $f(x)$ is increasing?
$f^{\prime}(x)>0$; it is above the x-axis
d) What is true about the graph of $f^{\prime}(x)$ when $f(x)$ is decreasing?
$f^{\prime}(x)<0$; it is below the x-axis

Effects of $\boldsymbol{f}^{\prime}(\boldsymbol{x})$ on $\boldsymbol{f}(\boldsymbol{x})$: When the graph of $f^{\prime}(x)$ is positive, or above the x-axis, on an interval, then the function $f(x)$ increases over that interval. Similarly, when the graph of $f^{\prime}(x)$ is negative, or below the x-axis, on an interval, then the function $f(x)$ decreases over that interval.

$$
\begin{aligned}
& \text { If } f^{\prime}(x)>0 \text { on an interval, } f(x) \text { is increasing on that interval } \\
& \text { If } f^{\prime}(x)<0 \text { on an interval, } f(x) \text { is decreasing on that interval }
\end{aligned}
$$

Part 2: Properties of graphs of $f(x)$ and $f^{\prime}(\boldsymbol{x})$

A critical number is a value ' a ' in the domain where $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist.
A critical number could yield...

	A local max	A local min	Neither	Max/Min at Cusp
$f(x)$				
$f^{\prime}(x)$				
	$f(x)$ has a local max $f^{\prime}(x)=0$ and changes from + to -	$f(x)$ has a local min $f^{\prime}(x)=0$ and changes from - to +	No local max/min $f^{\prime}(x)=0$ but does not change signs	$f(x)$ has a local min $f^{\prime}(x)$ does not exist but changes from to +

Conclusion:

Local extrema occur when the sign of the derivative CHANGES. If the sign of the derivative does not change, you do not have a local extrema.

A critical number of a function is a value of a in the domain of the function where either $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist. If a is a critical number, $(a, f(a))$ is a critical point. Critical points could be local extrema but not necessarily. You must test around the critical points to see if the derivative changes sign. This is called the 'First Derivative Test'.

Example 1: Determine all local extrema for the function below using critical numbers and the first derivative test. State when the function is increasing or decreasing.
$f(x)=2 x^{3}-9 x^{2}-24 x-10$
$f^{\prime}(x)=6 x^{2}-18 x-24$
$0=6\left(x^{2}-3 x-4\right)$
$0=6(x-4)(x+1)$
$x_{1}=4 \quad x_{2}=-1$
Critical Numbers: $x_{1}=4 \quad x_{2}=-1$
Critical Points: $(4,-122)$ and $(-1,3)$
$f(4)=2(4)^{3}-9(4)^{2}-24(4)-10=-122$
$f(-1)=2(-1)^{3}-9(-1)^{2}-24(-1)-10=3$

Sign Chart:

Increasing: $x<-1$ or $x>4$
Decreasing: $-1<x<4$
Notice how we could use the graph of the derivative to verify our solution:

Example 2: For each function, use the graph of $f^{\prime}(x)$ to sketch a possible function $f(x)$.

$f^{\prime}(x)$ is the constant function $y=-2$.
Therefore, $f(x)$ must be a linear function with a slope of -2

The y-intercept could be anywhere.
b)

$f^{\prime}(x)$ is a linear function
Therefore, $f(x)$ must be a quadratic function
$f^{\prime}(x)>0$ when $x<2$ and $f^{\prime}(x)<0$ when $x>2$
Therefore, $f(x)$ is increasing when $x<2$ and decreasing when $x>2$
$f^{\prime}(x)$ switching from + to - at $x=2$

There must be a local max at $f(2)$.
c) $f^{\prime}(x)$
$f^{\prime}(x)$ is a quadratic function
Therefore, $f(x)$ must be a cubic function
$f^{\prime}(x)>0$ when $x<2$ when $x>2$

Therefore, $f(x)$ is increasing when $x<2$ and when $x>2$
$f^{\prime}(x)$ does not switch signs on either side of $x=2$

Therefore, there is no local min or max at $f(2)$ but the tangent line would be horizontal at that point.
d)

$f^{\prime}(x)$ is a quadratic function
Therefore, $f(x)$ must be a cubic function
$f^{\prime}(x)>0$ when $x<1$ when $x>5$
Therefore, $f(x)$ is increasing when $x<1$ and when $x>5$
$f^{\prime}(x)<0$ when $1<x<5$
Therefore, $f(x)$ is decreasing when $1<x<5$
$f^{\prime}(x)$ switches signs on either side of $x=1$ (from + to -) and $x=5$ (from - to +)

Therefore, there is a max at $f(1)$ and a local min at $f(5)$

Example 3: Sketch a continuous function for each set of conditions
a) $f^{\prime}(x)>0$ when $x<0, f^{\prime}(x)<0$ when $x>0, f(0)=4$

$f(x)$ is increasing when $x<0$ and decreasing when $x>0$.

Therefore, there must be a local max at $x=0$.
$f(0)=4$
b) $f^{\prime}(x)>0$ when $x<-1$ and when $x>2, f^{\prime}(x)<0$ when $-1<x<2, f(0)=0$

$f(x)$ is increasing when $x<-1$ and when $x>2$.
$f(x)$ is decreasing when $-1<x<2$.

Therefore, there must be a local max at $x=-1$ and a local min at $x=2$.
$f(0)=0$

Example 4: The temperature of a person with a certain strain of flu can be approximated by the function $T(d)=-\frac{5}{18} d^{2}+\frac{15}{9} d+37$, where $0<d<6 ; T$ represents the person's temperature, in degrees Celsius and d is the number of days after the person first shows symptoms. During what interval will the person's temperature be increasing?
$T^{\prime}(d)=-\frac{5}{9} d+\frac{15}{9}$
Find critical numbers:
$0=-\frac{5}{9} d+\frac{15}{9}$
$\frac{5}{9} d=\frac{15}{9}$
$5 d=15$
$d=3$ is a critical number

0 Test value for x		1
$T^{\prime}(d)$	+	4
$T(d)$	Increasing	-

Therefore, a person's temperature will be increasing over the first 3 days.

