L2 – 4.4 Compound Angle Formulas

MHF4U

Jensen

Compound angle: an angle that is created by adding or subtracting two or more angles.

Part 1: Proof of cos(x - y)

Normal algebra rules do not apply:

$$cos(x - y) \neq cos x - cos y$$

So what does cos(x - y) = ?

Consider the diagram to the right...

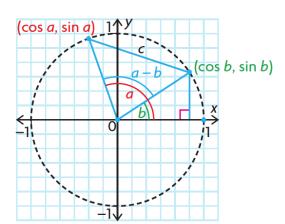
By the cosine law:

$$c^2 = 1^2 + 1^2 - 2(1)(1)\cos(a - b)$$

$$c^2 = 2 - 2\cos(a - b)$$
 THIS IS EQUATION 1

But notice that c has endpoints of $(\cos a, \sin a)$ and $(\cos b, \sin b)$

Using the distance formula $distance = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$



$$c = \sqrt{(\cos a - \cos b)^2 + (\sin a - \sin b)^2}$$

$$c^2 = (\cos a - \cos b)^2 + (\sin a - \sin b)^2$$

$$c^{2} = \cos^{2} a - 2\cos a \cos b + \cos^{2} b + \sin^{2} a - 2\sin a \sin b + \sin^{2} b$$

$$c^2 = 1 - 2\cos a\cos b - 2\sin a\sin b + 1$$

$$c^2 = 2 - 2\cos a\cos b - 2\sin a\sin b$$
 THIS IS EQUATION 2

Set equations 1 and 2 equal

$$2 - 2\cos(a - b) = 2 - 2\cos a\cos b - 2\sin a\sin b$$

$$-2\cos(a-b) = -2\cos a\cos b - 2\sin a\sin b$$

Part 2: Proofs of other compound angle formulas

Example 1: Prove $\cos(x + y) = \cos x \cos y - \sin x \sin y$

LS

LS = RS

LS = RS

RS

Example 2: Prove addition and subtraction formulas for sine using co-function identities and the subtraction formula for cosine.

Co-Function Identities

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

a) Prove $\sin(x + y) = \sin x \cos y + \cos x \sin y$

LS

RS

b) Prove $\sin(x - y) = \sin x \cos y - \cos x \sin y$

LS RS

LS = RS

Compound Angle Formulas

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x - y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

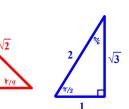
$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}$$

$$\tan(x - y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

Part 3: Determine Exact Trig Ratios for Angles other than Special Angles

By expressing an angle as a sum or difference of angles in the special triangles, exact values of other angles can be determined.



Example 3: Use compound angle formulas to determine exact values for

a)
$$\sin \frac{\pi}{12}$$

b)
$$\tan\left(-\frac{5\pi}{12}\right)$$

$$\sin\frac{\pi}{12} =$$

$$\tan\left(-\frac{5\pi}{12}\right) =$$

Part 4: Use Compound Angle Formulas to Simplify Trig Expressions

Example 4: Simplify the following expression

$$\cos\frac{7\pi}{12}\cos\frac{5\pi}{12} + \sin\frac{7\pi}{12}\sin\frac{5\pi}{12}$$

Part 5: Application

Example 5: Evaluate $\sin(a+b)$, where a and b are both angles in the second quadrant; given $\sin a = \frac{3}{5}$ and $\sin b = \frac{5}{13}$

Start by drawing both terminal arms in the second quadrant and solving for the third side.