н : 	L2 – Maxima and Minima	Unit 2
1	MCV4U	
	Jensen	
L		

Part 1: Review

Determine all local extrema for the function below using critical numbers and the first derivative test. State when the function is increasing and decreasing.

 $f(x) = 2x^3 + 3x^2 - 36x + 5$

Remember: Local extrema occur when the sign of the derivative CHANGES. If the sign of the derivative does not change, you have neither local extrema.

Part 2: Local vs Absolute Extrema

Local max or min values of a function are also called local extrema or turning points.

Local max: If the *y*-coordinate of all points in the vicinity are less than the *y*-coordinate of the point. The sign of the derivative would change from positive before the point, to zero at the point, to negative after.

Local min: If the *y*-coordinate of all points in the vicinity are greater than the *y*-coordinate of the point. The sign of the derivative would change from negative before the point, to zero at the point, to positive after.

Absolute max/min: A function f(x) has an ABSOLUTE max or min at point a if f(a) is the biggest or smallest value of f(x) for ALL x in the domain.

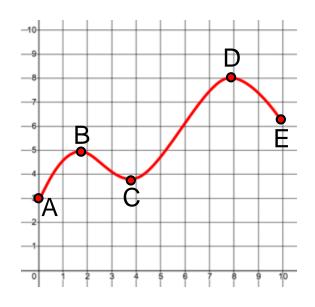
Example 1: Consider the graph of a function on the interval [0, 10].

a) Identify the local maximum points.

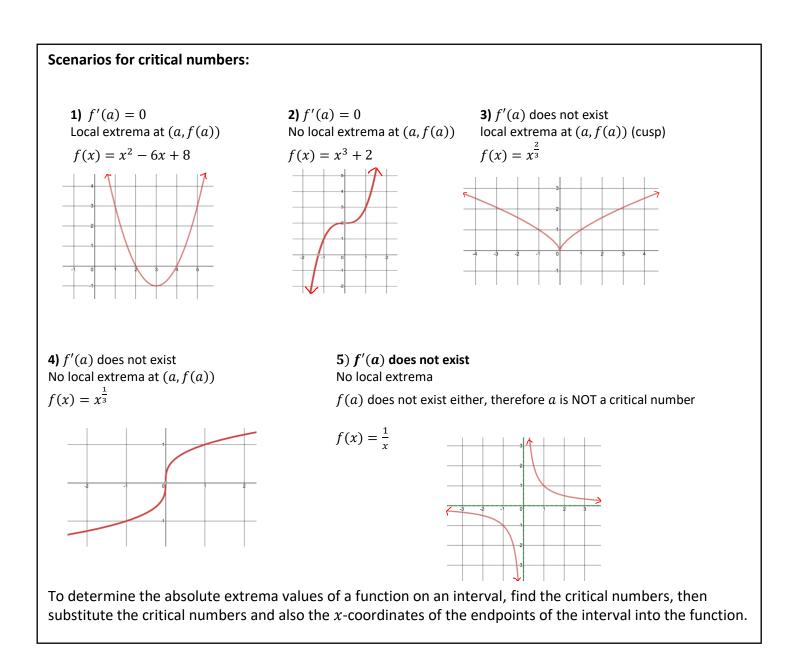
b) Identify the local minimum points.

c) What do all the points identified in parts a) and b) have in common?

d) Identify the absolute max and min points in the interval [0,10]



Reminder: A critical number of a function is a value of *a* in the domain of the function where either f'(a) = 0 or f'(a) does not exist. If *a* is a critical number, (a, f(a)) is a critical point.



Example 2: Find the absolute max and min of the function $f(x) = x^3 - 12x - 3$ on the interval $-3 \le x \le 4$.

Test critical numbers AND endpoints of interval. **Example 3:** The surface area of a cylindrical container is to be 100 cm^2 . Its volume is given by the function $V(r) = 50r - \pi r^3$, where r is the radius of the cylinder in cm. Find the max volume of the cylinder if the radius cannot exceed 3 cm.