r · 1 1	L2 – Vector Addition	Unit 4
i	MCV4U	1
!	Jensen	
L		'

Part 1: Adding Vectors

When you add two or more vectors, you are finding a single vector, called the ______, that has the same effect as the original vectors applied one after the other.

Two methods:

Parallelogram	Tip to Tail (triangle)
To determine the sum of any two vectors \vec{a} and \vec{b} , arranged tail-to-tail, complete the parallelogram formed by the two vectors. Their sum is the vector that is the diagonal of the constructed parallelogram.	The sum of vectors \vec{a} and \vec{b} can also be found by translating the tail of vector \vec{b} to the head of vector \vec{a} . The resultant is the vector from the tail of \vec{a} to the head of \vec{b} .
\vec{a} $\vec{a} + \vec{b}$	\vec{a} \vec{b} \vec{a} \vec{a} \vec{b} \vec{a} \vec{b}

What if we add opposite vectors?

When two opposite vectors are added, the resultant is the zero vector. This means that the combined effect of a vector and its opposite is the zero vector.

Part 2: Difference of 2 Vectors

If you want to determine the difference between two vectors, $\vec{a} - \vec{b}$, there are two options:

Example 1: Suppose you are given the vectors \vec{a} , \vec{b} , and \vec{c} as shown below. Using these three vectors, sketch $\vec{a} - \vec{b} + \vec{c}$

Example 2: In the rectangular box shown below, $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OC} = \vec{b}$, and $\overrightarrow{OD} = \vec{c}$. Express each of the following vectors in terms of \vec{a} , \vec{b} , and \vec{c} .

Part 3: Properties of Vector Addition

Commutative Property	$\vec{u} + \vec{v} = \vec{v} + \vec{u}$
Associative Property	$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
Identity Property	$\vec{v} + \vec{0} = \vec{v} = \vec{0} + \vec{v}$

Example 3: Simplify each of the following

a) $(\vec{u} + \vec{v}) - \vec{u}$

b) $[(\vec{p} + \vec{q}) - \vec{p}] - \vec{q}$

Part 4: Solving Problems involving Vector Addition and Subtraction

However, not all forces act in the same or opposite direction. Therefore, we will need some trigonometry to determine the magnitude of resultant vectors.

Rule	When to Use It	
Pythagorean Theorem	Right Triangle	
	Know: 2 sides	
$a^2 + b^2 = c^2$	Want: 3 rd side	
	Right Triangle	Right Triangle
$s \frac{0}{C} C \frac{A}{T} \frac{0}{C}$	Know: 2 sides	Know: 1 side, 1 angle
$\frac{3}{H} \frac{1}{H} \frac{1}{a}$	Want: Angle	Want: Side
	(use inverse ratio)	
Sine Law	Oblique Triangle (no right angle)	Oblique Triangle (no right angle)
	Know: 2 sides and opposite angle	Know: 1 side and all angles
a b c	Want: Angle	Want: Side
$\overline{\sin A} = \overline{\sin B} = \overline{\sin C}$		
Cosine Law	Oblique Triangle	Oblique Triangle
	Know: 2 sides and contained angle	Know: All 3 sides
$a^2 = b^2 + c^2 - 2bc(\cos A)$	Want: 3 rd side	Want: Angle
	(use top formula)	(use bottom formula)
$a^2 - b^2 - c^2$		
$\cos A = -2bc$		

Example 4: Given vectors \vec{a} and \vec{b} such that the angle between the two vectors is 60°, $|\vec{a}| = 3$, and $|\vec{b}| = 2$, determine $|\vec{a} + \vec{b}|$.

Note: "angle between vectors" means the angle between the vectors when placed tail to tail.

Translate them tip to tail to determine the resultant vector.

Example 5: An airplane heads due south at a speed of 300 km/h and meets a wind from the west at 100 km/h. What is the resultant velocity of the airplane (relative to the ground)?

Example 6: In an orienteering race, you walk 100 m due east and then walk $N70^{\circ}E$ for 60 m. How far are you from your starting position, and at what bearing?