Part 1: Adding Vectors

When you add two or more vectors, you are finding a single vector, called the \qquad that has the same effect as the original vectors applied one after the other.

Two methods:

Parallelogram	Tip to Tail (triangle)
To determine the sum of any two vectors \vec{a} and \vec{b}, arranged tail-to-tail, complete the parallelogram formed by the two vectors. Their sum is the vector that is the diagonal of the constructed parallelogram.	The sum of vectors \vec{a} and \vec{b} can also be found by translating the tail of vector \vec{b} to the head of vector \vec{a}. The resultant is the vector from the tail of \vec{a} to the head of \vec{b}.

What if we add opposite vectors?
When two opposite vectors are added, the resultant is the zero vector. This means that the combined effect of a vector and its opposite is the zero vector.

Part 2: Difference of 2 Vectors

If you want to determine the difference between two vectors, $\vec{a}-\vec{b}$, there are two options:

Adding the Opposite	Tail to Tail
The difference between \vec{a} and \vec{b} is found by adding the opposite of vector \vec{b} to \vec{a} using the triangle law of addition.	Another way to think about $\vec{a}-\vec{b}$ is to arrange the vectors tail to tail. In this case, $\vec{a}-\vec{b}$ is the vector that must be added to \vec{b} to get \vec{a}
a	

Example 1: Suppose you are given the vectors \vec{a}, \vec{b}, and \vec{c} as shown below. Using these three vectors, sketch $\vec{a}-\vec{b}+\vec{c}$

Example 2: In the rectangular box shown below, $\overrightarrow{O A}=\vec{a}, \overrightarrow{O C}=\vec{b}$, and $\overrightarrow{O D}=\vec{c}$. Express each of the following vectors in terms of \vec{a}, \vec{b}, and \vec{c}.
a) $\overrightarrow{B C}$
b) $\overrightarrow{G F}$
c) $\overrightarrow{O B}$
d) $\overrightarrow{A C}$
e) $\overrightarrow{B G}$
f) $\overrightarrow{O F}$

Part 3: Properties of Vector Addition

Commutative Property	$\vec{u}+\vec{v}=\vec{v}+\vec{u}$
Associative Property	$(\vec{u}+\vec{v})+\vec{w}=\vec{u}+(\vec{v}+\vec{w})$
Identity Property	$\vec{v}+\overrightarrow{0}=\vec{v}=\overrightarrow{0}+\vec{v}$

Example 3: Simplify each of the following
a) $(\vec{u}+\vec{v})-\vec{u}$
b) $[(\vec{p}+\vec{q})-\vec{p}]-\vec{q}$

Part 4: Solving Problems involving Vector Addition and Subtraction

If you have two vectors acting in the same direction, the overall magnitude is equal to the sum of the two individual magnitudes.

$$
|\vec{r}|=|\vec{a}|+|\vec{b}|
$$

If you have two vectors acting in opposite directions, the overall magnitude is equal to the difference of the two individual magnitudes.

$$
|\vec{r}|=|\vec{a}|-|\vec{b}|
$$

However, not all forces act in the same or opposite direction. Therefore, we will need some trigonometry to determine the magnitude of resultant vectors.

Rule	When to Use It	
Pythagorean Theorem $a^{2}+b^{2}=c^{2}$	Right Triangle Know: 2 sides Want: $3^{\text {rd }}$ side	
$S \frac{O}{H} C \frac{A}{H} T \frac{O}{a}$	Right Triangle Know: 2 sides Want: Angle (use inverse ratio)	Right Triangle Know: 1 side, 1 angle Want: Side
Sine Law $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$	Oblique Triangle (no right angle) Know: 2 sides and opposite angle Want: Angle	Oblique Triangle (no right angle) Know: 1 side and all angles Want: Side
Cosine Law $\begin{gathered} a^{2}=b^{2}+c^{2}-2 b c(\cos A) \\ \cos A=\frac{a^{2}-b^{2}-c^{2}}{-2 b c} \end{gathered}$	Oblique Triangle Know: 2 sides and contained angle Want: $3^{\text {rd }}$ side (use top formula)	Oblique Triangle Know: All 3 sides Want: Angle (use bottom formula)

Example 4: Given vectors \vec{a} and \vec{b} such that the angle between the two vectors is $60^{\circ},|\vec{a}|=3$, and $|\vec{b}|=2$, determine $|\vec{a}+\vec{b}|$.

Note: "angle between vectors" means the angle between the vectors when placed tail to tail.

Translate them tip to tail to determine the resultant vector.

Example 5: An airplane heads due south at a speed of $300 \mathrm{~km} / \mathrm{h}$ and meets a wind from the west at $100 \mathrm{~km} / \mathrm{h}$. What is the resultant velocity of the airplane (relative to the ground)?

Example 6: In an orienteering race, you walk 100 m due east and then walk $N 70^{\circ} \mathrm{E}$ for 60 m . How far are you from your starting position, and at what bearing?

