## Part 1: Review

Determine all local extrema for the function below using critical numbers and the first derivative test. State when the function is increasing and decreasing.
$f(x)=2 x^{3}+3 x^{2}-36 x+5$
$f^{\prime}(x)=6 x^{2}+6 x-36$
$0=6\left(x^{2}+x-6\right)$
$0=6(x+3)(x-2)$
$x=-3$ and $x=2$ are critical numbers

Critical points:
$f(-3)=2(-3)^{3}+3(-3)^{2}-36(-3)+5=86$
$f(2)=2(2)^{3}+3(2)^{2}-36(2)+5=-39$


Interval of increasing: $(-\infty,-3) \cup(2, \infty)$
Interval of decreasing: $(-3,2)$

## Part 2: Local vs Absolute Extrema

Local max or min values of a function are also called local extrema, or turning points.
Local max: If the $y$-coordinate of all points in the vicinity are less than the $y$-coordinate of the point. The sign of the derivative would change from positive before the point, to zero at the point, to negative after.

Local min: If the $y$-coordinate of all points in the vicinity are greater than the $y$-coordinate of the point. The sign of the derivative would change from negative before the point, to zero at the point, to positive after.

Absolute max/min: A function $f(x)$ has an ABSOLUTE max or min at point $a$ if $f(a)$ is the biggest or smallest value of $f(x)$ for ALL $x$ in the domain.

Example 1: Consider the graph of a function on the interval $[0,10]$.
a) Identify the local maximum points.
$B$ and D
b) Identify the local minimum points.

C
c) What do all the points identified in parts a) and b) have in common?

They each would have horizontal tangent lines.
d) Identify the absolute max and min points in the interval [0,10]


Absolute max is at $D$

## Absolute min is at A

Reminder: A critical number of a function is a value of $a$ in the domain of the function where either $f^{\prime}(a)=0$ or $f^{\prime}(a)$ does not exist. If $a$ is a critical number, $(a, f(a))$ is a critical point.

## Scenarios for critical numbers:

1) $f^{\prime}(a)=0$

Local extrema at $(a, f(a))$
$f(x)=x^{2}-6 x+8$

2) $f^{\prime}(a)=0$

No local extrema at $(a, f(a))$
$f(x)=x^{3}+2$

3) $f^{\prime}(a)$ does not exist local extrema at ( $a, f(a)$ ) (cusp)
$f(x)=x^{\frac{2}{3}}$

4) $f^{\prime}(a)$ does not exist

No local extrema at $(a, f(a))$
$f(x)=x^{\frac{1}{3}}$

5) $f^{\prime}(a)$ does not exist

No local extrema
$f(a)$ does not exist either, therefore $a$ is NOT a critical number
$f(x)=\frac{1}{x}$


To determine the absolute extrema values of a function on an interval, find the critical numbers, then substitute the critical numbers and also the $x$-coordinates of the endpoints of the interval into the function.

Example 2: Find the absolute max and min of the function $f(x)=x^{3}-12 x-3$ on the interval $-3 \leq x \leq 4$.
$f^{\prime}(x)=3 x^{2}-12$
$0=3\left(x^{2}-4\right)$
$0=3(x-2)(x+2)$
$x=2$ and $x=-2$ are critical numbers
$f(-3)=(-3)^{3}-12(-3)-3=6$
$f(-2)=13$
$f(2)=-19$
Absolute min: $(2,-19)$
$f(4)=13$
Absolute max: $(-2,13)$ and
$(4,13)$

Example 3: The surface area of a cylindrical container is to be $100 \mathrm{~cm}^{2}$. Its volume is given by the function $V(r)=50 r-\pi r^{3}$, where $r$ is the radius of the cylinder in cm . Find the max volume of the cylinder if the radius cannot exceed 3 cm .
$V^{\prime}(r)=50-3 \pi r^{2}$
Find any critical numbers:
$0=50-3 \pi r^{2}$
$3 \pi r^{2}=50$
$r=\sqrt{\frac{50}{3 \pi}}$ is a critical number

Test endpoints of interval and critical number to find absolute max

$$
V(0)=0 \mathrm{~cm}^{3}
$$

$$
V\left(\sqrt{\frac{50}{3 \pi}}\right)=76.8 \mathrm{~cm}^{3}
$$

$$
V(3)=65.2 \mathrm{~cm}^{3}
$$

Therefore, the max volume of the cylinder is about $76.8 \mathrm{~cm}^{3}$ when the radius is about 2.3 cm .

