Part 1: Proof of the Product Rule

$\frac{d}{d x}[f(x) g(x)]=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x+h) g(x)+f(x+h) g(x)-f(x) g(x)}{h}$
$\frac{d}{d x}[f(x) g(x)]=\lim _{h \rightarrow 0} \frac{f(x+h)[g(x+h)-g(x)]+g(x)[f(x+h)-f(x)]}{h}$
$\frac{d}{d x}[f(x) g(x)]=\left[\lim _{h \rightarrow 0} f(x+h)\right]\left[\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}\right]+\left[\lim _{h \rightarrow 0} g(x)\right]\left[\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]$
$\frac{d}{d x}[f(x) g(x)]=f(x) g^{\prime}(x)+g(x) f^{\prime}(x)$

The Product Rule:

$$
\text { If } P(x)=f(x) g(x) \text {, then } P^{\prime}(x)=f^{\prime}(x) g(x)+g^{\prime}(x) f(x)
$$

"Derivative of the first times the second plus derivative of the second times the first"

Part 2: Apply the Product Rule

Example 1: Use the product rule to differentiate each function.
a) $P(x)=(3 x-5)\left(x^{2}+1\right)$

$$
P^{\prime}(x)=3\left(x^{2}+1\right)+2 x(3 x-5)
$$

b) $y=(2 x+3)(1-x)$

$$
P^{\prime}(x)=3 x^{2}+3+6 x^{2}-10 x
$$

$$
P^{\prime}(x)=9 x^{2}-10 x+3
$$

$$
\begin{aligned}
& \frac{d y}{d x}=2(1-x)+(-1)(2 x+3) \\
& \frac{d y}{d x}=2-2 x-2 x-3 \\
& \frac{d y}{d x}=-4 x-1
\end{aligned}
$$

Example 2: Find $h^{\prime}(-1)$ where $h(x)=\left(5 x^{3}+7 x^{2}+3\right)\left(2 x^{2}+x+6\right)$
$h^{\prime}(x)=\left(15 x^{2}+14 x\right)\left(2 x^{2}+x+6\right)+(4 x+1)\left(5 x^{3}+7 x^{2}+3\right)$
$h^{\prime}(-1)=\left[15(-1)^{2}+14(-1)\right]\left[2(-1)^{2}+(-1)+6\right]+[4(-1)+1]\left[5(-1)^{3}+7(-1)^{2}+3\right]$
$h^{\prime}(-1)=(1)(7)+(-3)(5)$
$h^{\prime}(-1)=-8$

Example 3: Find the derivative of $g(x)=(x-1)(2 x)\left(x^{2}+3\right)$
$g^{\prime}(x)=(4 x-2)\left(x^{2}+3\right)+(2 x)(x-1)(2 x)$
$g^{\prime}(x)=4 x^{3}+12 x-2 x^{2}-6+4 x^{2}(x-1)$
$g^{\prime}(x)=4 x^{3}+12 x-2 x^{2}-6+4 x^{3}-4 x^{2}$
$g^{\prime}(x)=8 x^{3}-6 x^{2}+12 x-6$

Consider $(x-1)(2 x)$ as the $1^{\text {st }}$ function
Consider $x^{2}+3$ as the $2^{\text {nd }}$ function
$\frac{d}{d x} 1^{\text {st }}=1(2 x)+2(x-1)=4 x-2$

Note: In example 3, expanding first would probably be easier, but that is not always the case such as with $h(x)=(2 x) \cdot \sqrt{x+1}$

Example 4: Determine an equation for the tangent to the curve $y=\left(x^{2}-1\right)\left(x^{2}-2 x+1\right)$ at $x=2$.

Point on the tangent line:
$y=\left[2^{2}-1\right]\left[2^{2}-2(2)+1\right]$
$y=(3)(1)$
$y=3$
$(2,3)$

Equation of Tangent Line:
$y=m x+b$
$3=10(2)+b$
$b=-17$
$y=10 x-17$

Slope of tangent line:

$$
\begin{aligned}
& \frac{d y}{d x}=2 x\left(x^{2}-2 x+1\right)+(2 x-2)\left(x^{2}-1\right) \\
& \left.\frac{d y}{d x}\right|_{x=2}=2(2)\left[2^{2}-2(2)+1\right]+[2(2)-2]\left[2^{2}-1\right]
\end{aligned}
$$

$$
\left.\frac{d y}{d x}\right|_{x=2}=4(1)+2(3)
$$

$$
\left.\frac{d y}{d x}\right|_{x=2}=10
$$

Example 5: Student council is organizing its annual trip to an out-of-town concert. For the past 3 years, the cost of the trip has been $\$ 140$ per person. At this price, all 200 seats on the train were filled. This year, student council plans to increase the price of the trip. Based on a student survey, council estimates that for every $\$ 10$ increase in price, five fewer students will attend the concert.
a) Write an equation to represent revenue, R, in dollars, as a function of the number of $\$ 10 \mathrm{increases}, n$.
$R(n)=($ price $)(\#$ of students $)$
$R(n)=(140+10 n)(200-5 n)$
b) Determine an expression, in simplified form, for $\frac{d R}{d n}$ and interpret it for this situation.
$R^{\prime}(n)=10(200-5 n)+(-5)(140+10 n)$
$R^{\prime}(n)=2000-50 n-700-50 n$
$R^{\prime}(n)=-100 n+1300$
c) Determine when $R^{\prime}(n)=0$. What information does this give the manager?
$0=-100 n+1300$
$100 n=1300$
$n=13$
The tangent slope is 0 when $n=13$. Therefore, there is a maximum revenue when there are 13 price increases.
$R(13)=[140+10(13)][200-5(13)]$
$R(13)=(270)(135)$
$R(13)=36450$
With 13 price increases, the manager will sell 135 tickets for $\$ 270$ each and make a max revenue of $\$ 36450$.

