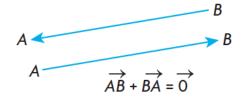
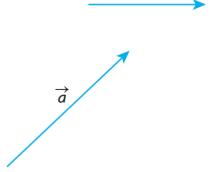
MCV4U Jensen

Part 1: Adding Vectors

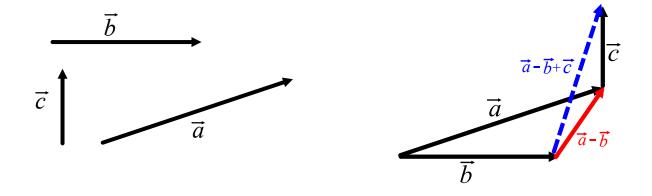

When you add two or more vectors, you are finding a single vector, called the **RESULTANT**, that has the same effect as the original vectors applied one after the other.

Two methods:

Parallelogram	Tip to Tail (triangle)
To determine the sum of any two vectors \vec{a} and \vec{b} , arranged tail-to-tail, complete the parallelogram formed by the two vectors. Their sum is the vector that is the diagonal of the constructed parallelogram.	The sum of vectors \vec{a} and \vec{b} can also be found by translating the tail of vector \vec{b} to the head of vector \vec{a} . The resultant is the vector from the tail of \vec{a} to the head of \vec{b} .
\overrightarrow{a} \overrightarrow{a} \overrightarrow{b}	\overrightarrow{a} \overrightarrow{b} $\overrightarrow{a} + \overrightarrow{b}$


What if we add opposite vectors?

When two opposite vectors are added, the resultant is the zero vector. This means that the combined effect of a vector and its opposite is the zero vector.


Part 2: Difference of 2 Vectors

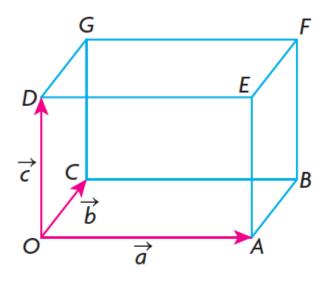
If you want to determine the difference between two vectors, $\vec{a}-\vec{b}$, there are two options:

Adding the Opposite	Tail to Tail	
The difference between $ec{a}$ and $ec{b}$ is found by adding	Another way to think about $ec{a}-ec{b}$ is to arrange the	
the opposite of vector $ec{b}$ to $ec{a}$ using the triangle law	vectors tail to tail. In this case, $ec{a}-ec{b}$ is the vector	
of addition.	that must be added to $ec{b}$ to get $ec{a}$	
$\overrightarrow{a} + (-\overrightarrow{b}) = \overrightarrow{a} - \overrightarrow{b}$	\overrightarrow{a} \overrightarrow{a} \overrightarrow{b}	

Example 1: Suppose you are given the vectors \vec{a} , \vec{b} , and \vec{c} as shown below. Using these three vectors, sketch $\vec{a} - \vec{b} + \vec{c}$

Example 2: In the rectangular box shown below, $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OC} = \vec{b}$, and $\overrightarrow{OD} = \vec{c}$. Express each of the following vectors in terms of \vec{a} , \vec{b} , and \vec{c} .

a)
$$\overrightarrow{BC} = -\overrightarrow{a}$$


b)
$$\overrightarrow{GF} = \overrightarrow{a}$$

c)
$$\overrightarrow{OB} = \vec{a} + \vec{b}$$

d)
$$\overrightarrow{AC} = \overrightarrow{b} - \overrightarrow{a}$$

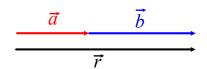
e)
$$\overrightarrow{BG} = \overrightarrow{c} + (-\overrightarrow{a}) = \overrightarrow{c} - \overrightarrow{a}$$

f)
$$\overrightarrow{OF} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$$

Part 3: Properties of Vector Addition

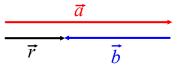
Commutative Property	$\vec{u} + \vec{v} = \vec{v} + \vec{u}$
Associative Property	$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$
Identity Property	$\vec{v} + \vec{0} = \vec{v} = \vec{0} + \vec{v}$

Example 3: Simplify each of the following


a)
$$(\vec{u} + \vec{v}) - \vec{u}$$

b)
$$[(\vec{p} + \vec{q}) - \vec{p}] - \vec{q}$$

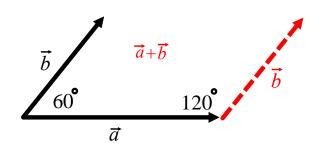
$$\begin{vmatrix} [\vec{q} + (\vec{p} - \vec{p})] - \vec{q} \\ = (\vec{q} + \vec{0}) - \vec{q} \\ = \vec{q} - \vec{q} \\ = \vec{0} \end{vmatrix}$$


Part 4: Solving Problems involving Vector Addition and Subtraction

If you have two vectors acting in the same direction, the overall magnitude is equal to the sum of the two individual magnitudes.

$$|\vec{r}| = |\vec{a}| + |\vec{b}|$$

If you have two vectors acting in opposite directions, the overall magnitude is equal to the difference of the two individual magnitudes.



$$|\vec{r}| = |\vec{a}| - |\vec{b}|$$

However, not all forces act in the same or opposite direction. Therefore, we will need some trigonometry to determine the magnitude of resultant vectors.

When to Use It	
Right Triangle	
Know: 2 sides	
Want: 3 rd side	
Right Triangle	Right Triangle
Know: 2 sides	Know: 1 side, 1 angle
Want: Angle	Want: Side
(use inverse ratio)	
Oblique Triangle (no right angle)	Oblique Triangle (no right angle)
Know: 2 sides and opposite angle	Know: 1 side and all angles
Want: Angle	Want: Side
Oblique Triangle	Oblique Triangle
Know: 2 sides and contained angle	Know: All 3 sides
Want: 3 rd side	Want: Angle
(use top formula)	(use bottom formula)
	Right Triangle Know: 2 sides Want: 3 rd side Right Triangle Know: 2 sides Want: Angle (use inverse ratio) Oblique Triangle (no right angle) Know: 2 sides and opposite angle Want: Angle Oblique Triangle Know: 2 sides and contained angle Want: 3 rd side

Example 4: Given vectors \vec{a} and \vec{b} such that the angle between the two vectors is 60° , $|\vec{a}| = 3$, and $|\vec{b}| = 2$, determine $|\vec{a} + \vec{b}|$.

Note: "angle between vectors" means the angle between the vectors when placed tail to tail.

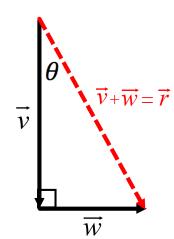
Translate them tip to tail to determine the resultant vector.

$$|\vec{a} + \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2|\vec{a}||\vec{b}|\cos(120)$$

$$|\vec{a} + \vec{b}|^2 = (3)^2 + (2)^2 - 2(3)(2)\cos(120)$$

$$|\vec{a} + \vec{b}|^2 = 13 - 12\left(-\frac{1}{2}\right)$$

$$|\vec{a} + \vec{b}|^2 = 19$$


$$|\vec{a} + \vec{b}| = \sqrt{19}$$

Example 5: An airplane heads due south at a speed of 300 km/h and meets a wind from the west at 100 km/h. What is the resultant velocity of the airplane (relative to the ground)?

Let \vec{v} represent the velocity of the airplane without the wind.

Let \overrightarrow{w} represent the velocity of the wind.

Let \vec{r} represent the resultant velocity of airplane with wind taken in to account relative to a fixed point on the ground.

Magnitude of resultant (speed):

 $\theta \cong 18.4^{\circ}$

$$|\vec{r}|^2 = |\vec{v}|^2 + |\vec{w}|^2$$

$$tan \theta = \frac{100}{300}$$

$$|\vec{r}|^2 = (300)^2 + (100)^2$$

$$|\vec{r}|^2 = 100 \ 000$$

$$\theta = tan^{-1} \left(\frac{1}{3}\right)$$

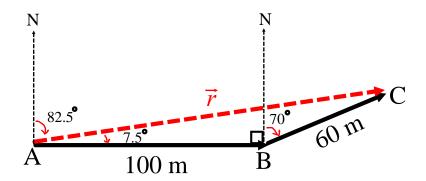
Therefore, the plane is heading $S18.4^{\circ}E$ at a speed of 316.23 km/h.

Example 6: In an orienteering race, you walk 100 m due east and then walk $N70^{\circ}E$ for 60 m. How far are you from your starting position, and at what bearing?

$$|\vec{r}|^2 = |\overrightarrow{AB}|^2 + |\overrightarrow{BC}|^2 - 2|\overrightarrow{AB}||\overrightarrow{BC}|\cos(160)$$

$$|\vec{r}|^2 = (100)^2 + (60)^2 - 2(100)(60)\cos(160)$$

$$|\vec{r}|\cong 157.7~\mathrm{m}$$


 $|\vec{r}| \cong 316.23 \text{ km/h}$

$$\frac{157.7}{\sin 160} = \frac{60}{\sin A}$$

$$\sin A = \frac{60 \sin 160}{157.7}$$

$$\angle A = \sin^{-1}(\frac{60\sin 160}{157.7})$$

$$\angle A \cong 7.5^{\circ}$$

You have travelled about 157.7 m at a quadrant bearing of N82.5°E.