	• • • • • • • • • • • • • • • • • • • •
: <mark>L3</mark>	– 7.3 – Product and Quotient Laws of Logarithms
: м	HF4U
• Jen	nsen

Part 1: Proof of Product Law of Logarithms

Let $x = \log_b m$ and $y = \log_b n$

Written in exponential form:

Part 2: Summary of Log Rules

Power Law of Logarithms	for $b > 0, b \neq 1, x > 0$
Product Law of Logarithms	for $b > 0, b \neq 1, m > 0, n > 0$
Quotient Law of Logarithms	for $b > 0, b \neq 1, m > 0, n > 0$
Change of Base Formula	for $m > 0, b > 0, b \neq 1$
Exponential to Logarithmic	
Logarithmic to Exponential	
Other useful tips	

Part 3: Practice Using Log Rules

Example 1: Write as a single logarithm

a) $\log_5 6 + \log_5 8 - \log_5 16$

```
b) \log x + \log y + \log(3x) - \log y
```

Started by collecting like terms. Must have same base and argument.

Can't use power law because the exponent 2 applies only to x, not to 3x.

 $\mathbf{c} \mathbf{\hat{c}} \frac{\log_2 7}{\log_2 5}$

Used change of base formula.

d) $\log 12 - 3 \log 2 + 2 \log 3$

Example 2: Write as a single logarithm and then evaluate

a) $\log_8 4 + \log_8 16$

b) $\log_3 405 - \log_3 5$

c) $2\log 5 + \frac{1}{2}\log 16$

a) $\log_3(xy)$

b) log 20

c) $\log(ab^2c)$

Example 4: Simplify the following algebraic expressions

a)
$$\log\left(\frac{\sqrt{x}}{x^2}\right)$$
 b) $\log(\sqrt{x})^3 + \log x^2 - \log \sqrt{x}$ c) $\log(2x-2) - \log(x^2-1)$