Part 1: Proof of Product Law of Logarithms

Let $x=\log _{b} m$ and $y=\log _{b} n$
Written in exponential form:

Part 2: Summary of Log Rules

Power Law of Logarithms	for $b>0, b \neq 1, x>0$
Product Law of Logarithms	for $b>0, b \neq 1, m>0, n>0$
Quotient Law of Logarithms	for $b>0, b \neq 1, m>0, n>0$
Change of Base Formula	for $m>0, b>0, b \neq 1$
Exponential to Logarithmic	
Logarithmic to Exponential	
Other useful tips	

Part 3: Practice Using Log Rules

Example 1: Write as a single logarithm
a) $\log _{5} 6+\log _{5} 8-\log _{5} 16$
b) $\log x+\log y+\log (3 x)-\log y$

Started by collecting like terms. Must have same base and argument.

Can't use power law because the exponent 2 applies only to x, not to $3 x$.
c) $\frac{\log _{2} 7}{\log _{2} 5}$

Used change of base formula.
d) $\log 12-3 \log 2+2 \log 3$

Example 2: Write as a single logarithm and then evaluate
a) $\log _{8} 4+\log _{8} 16$
b) $\log _{3} 405-\log _{3} 5$
c) $2 \log 5+\frac{1}{2} \log 16$

Example 3: Write the Logarithm as a Sum or Difference of Logarithms
a) $\log _{3}(x y)$
b) $\log 20$
c) $\log \left(a b^{2} c\right)$

Example 4: Simplify the following algebraic expressions
a) $\log \left(\frac{\sqrt{x}}{x^{2}}\right)$
b) $\log (\sqrt{x})^{3}+\log x^{2}-\log \sqrt{x}$
c) $\log (2 x-2)-\log \left(x^{2}-1\right)$

