Part 1: Remember the Unit Circle

The unit circle is a circle is a circle that is centered at the origin and has a radius of \qquad . On the unit circle, the sine and cosine functions take a simple form:
$\sin \theta=$
$\cos \theta=$

The value of $\sin \theta$ is the \qquad of each point on the unit circle

The value of $\cos \theta$ is the \qquad of each point on the unit circle

$$
(x, y)=(\cos \theta, \sin \theta)
$$

Part 2: Graphing Sine and Cosine

To graph sine and cosine, we will be using a Cartesian plane that has angles for x values.
Example 1: Complete the following table of values for the function $f(x)=\sin (x)$. Use special triangles, the unit circle, or a calculator to find values for the function at $30^{\circ}=\frac{\pi}{6}$ radian intervals.

x	$\sin x$
0	
$\frac{\pi}{6}$	
$\frac{2 \pi}{6}=\frac{\pi}{3}$	
$\frac{3 \pi}{6}=\frac{\pi}{2}$	
$\frac{4 \pi}{6}=\frac{2 \pi}{3}$	
$\frac{5 \pi}{6}$	
$\frac{6 \pi}{6}=\pi$	
$\frac{7 \pi}{6}$	
$\frac{8 \pi}{6}=\frac{4 \pi}{3}$	
$\frac{9 \pi}{6}=\frac{3 \pi}{2}$	
$\frac{10 \pi}{6}=\frac{5 \pi}{3}$	
$\frac{11 \pi}{6}$	
$\frac{12 \pi}{6}=2 \pi$	

Example 2: Complete the following table of values for the function $f(x)=\cos (x)$. Use special triangles, the unit circle, or a calculator to find values for the function at $30^{\circ}=\frac{\pi}{6}$ radian intervals.

x	$\cos x$
0	
$\frac{\pi}{6}$	
$\frac{2 \pi}{6}=\frac{\pi}{3}$	
$\frac{3 \pi}{6}=\frac{\pi}{2}$	
$\frac{4 \pi}{6}=\frac{2 \pi}{3}$	
$\frac{5 \pi}{6}$	
$\frac{6 \pi}{6}=\pi$	
$\frac{7 \pi}{6}$	
$\frac{8 \pi}{6}=\frac{4 \pi}{3}$	
$\frac{9 \pi}{6}=\frac{3 \pi}{2}$	
$\frac{10 \pi}{6}=\frac{5 \pi}{3}$	
$\frac{11 \pi}{6}$	
$\frac{12 \pi}{6}=2 \pi$	

Properties of both Sine and Cosine Functions

Domain:

Range:
Period:

Amplitude:
\qquad : the horizontal length of one cycle on a graph.
\qquad : half the distance between the maximum and minimum values of a periodic function.

Part 3: Graphing the Tangent Function

Recall: $\tan \theta=\frac{\sin \theta}{\cos \theta}$
Note: Since $\cos \theta$ is in the denominator, any time $\cos \theta=0, \tan \theta$ will be undefined which will lead to a vertical asymptote.

Since $\sin \theta$ is in the numerator, any time $\sin \theta=0, \tan \theta$ will equal 0 which will be an x-intercept.
Example 3: Complete the following table of values for the function $f(x)=\tan (x)$. Use the quotient identity to find y-values.

x	$\tan x$
0	
$\frac{\pi}{6}$	
$\frac{2 \pi}{6}=\frac{\pi}{3}$	
$\frac{3 \pi}{6}=\frac{\pi}{2}$	
$\frac{4 \pi}{6}=\frac{2 \pi}{3}$	
$\frac{5 \pi}{6}$	
$\frac{6 \pi}{6}=\pi$	
$\frac{7 \pi}{6}$	
$\frac{8 \pi}{6}=\frac{4 \pi}{3}$	
$\frac{9 \pi}{6}=\frac{3 \pi}{2}$	
$\frac{10 \pi}{6}=\frac{5 \pi}{3}$	
$\frac{11 \pi}{6}$	
$\frac{12 \pi}{6}=2 \pi$	

Properties of the Tangent Function

Domain:
Range:

Period:
Amplitude:

```
csc}\boldsymbol{0}
sec 0=
cot 0}
```

The graph of a reciprocal trig function is related to the graph of its corresponding primary trig function in the following ways:

- Reciprocal has a vertical asymptote at each zero of its primary trig function
- Has the same positive/negative intervals but intervals of increasing/decreasing are reversed
- y-values of 1 and -1 do not change and therefore this is where the reciprocal and primary intersect
- Local min points of the primary become local max of the reciprocal and vice versa.

Example 4: Complete the following table of values for the function $f(x)=\csc (x)$. Use the reciprocal identity to find y-values.

x	$\csc x$
0	
$\frac{\pi}{6}$	
$\frac{2 \pi}{6}=\frac{\pi}{3}$	
$\frac{3 \pi}{6}=\frac{\pi}{2}$	
$\frac{4 \pi}{6}=\frac{2 \pi}{3}$	
$\frac{5 \pi}{6}$	
$\frac{6 \pi}{6}=\pi$	
$\frac{7 \pi}{6}$	
$\frac{8 \pi}{6}=\frac{4 \pi}{3}$	
$\frac{9 \pi}{6}=\frac{3 \pi}{2}$	
$\frac{\frac{50 \pi}{6}}{6}=\frac{5 \pi}{3}$	
$\frac{11 \pi}{6}$	
$\frac{12 \pi}{6}=2 \pi$	

Properties of the Cosecant Function

Domain:
Range:

Period:
Amplitude:

Example 5: Complete the following table of values for the function $f(x)=\sec (x)$. Use the reciprocal identity to find y-values.

x	$\sec x$
0	
$\frac{\pi}{6}$	
$\frac{2 \pi}{6}=\frac{\pi}{3}$	
$\frac{3 \pi}{6}=\frac{\pi}{2}$	
$\frac{4 \pi}{6}=\frac{2 \pi}{3}$	
$\frac{5 \pi}{6}$	
$\frac{6 \pi}{6}=\pi$	
$\frac{7 \pi}{6}$	
$\frac{8 \pi}{6}=\frac{4 \pi}{3}$	
$\frac{9 \pi}{6}=\frac{3 \pi}{2}$	
$\frac{10 \pi}{6}=\frac{5 \pi}{3}$	
$\frac{11 \pi}{6}$	
$\frac{12 \pi}{6}=2 \pi$	

Properties of the Secant Function

Domain:

Range:
Period:

Amplitude:

Example 6: Complete the following table of values for the function $f(x)=\cot (x)$. Use the reciprocal identity to find y-values.

x	$\cot x$
0	
$\frac{\pi}{6}$	
$\frac{2 \pi}{6}=\frac{\pi}{3}$	
$\frac{3 \pi}{6}=\frac{\pi}{2}$	
$\frac{4 \pi}{6}=\frac{2 \pi}{3}$	
$\frac{5 \pi}{6}=\frac{2 \pi}{3}$	
$\frac{6 \pi}{6}=\pi$	
$\frac{7 \pi}{6}$	
$\frac{8 \pi}{6}=\frac{4 \pi}{3}$	
$\frac{9 \pi}{6}=\frac{3 \pi}{2}$	
$\frac{10 \pi}{6}=\frac{5 \pi}{3}$	
$\frac{11 \pi}{6}$	
$\frac{12 \pi}{6}=2 \pi$	

Properties of the Cotangent Function

Domain:

Period:

Range:
Amplitude:

