

Part 2: Graphing Sine and Cosine

To graph sine and cosine, we will be using a Cartesian plane that has angles for x values.

Example 1: Complete the following table of values for the function $f(x) = \sin(x)$. Use special triangles, the unit circle, or a calculator to find values for the function at $30^\circ = \frac{\pi}{6}$ radian intervals.

Example 2: Complete the following table of values for the function $f(x) = \cos(x)$. Use special triangles, the unit circle, or a calculator to find values for the function at $30^\circ = \frac{\pi}{6}$ radian intervals.

1.25

0.75

0.5

0.25

-0.25

-0.75

-1.25

7π/6 4π/3 3π/2 5π/3 11π/6

2π/3 5π/

Properties of both Sine and Cosine Functions

Domain:

Range:

Period:

Amplitude:

_____: the horizontal length of one cycle on a graph.

_____: half the distance between the maximum and minimum values of a periodic function.

Part 3: Graphing the Tangent Function

Recall: $\tan \theta = \frac{\sin \theta}{\cos \theta}$

Note: Since $\cos \theta$ is in the denominator, any time $\cos \theta = 0$, $\tan \theta$ will be undefined which will lead to a vertical asymptote.

Since $\sin \theta$ is in the numerator, any time $\sin \theta = 0$, $\tan \theta$ will equal 0 which will be an *x*-intercept.

Example 3: Complete the following table of values for the function $f(x) = \tan(x)$. Use the quotient identity to find *y*-values.

x	tan x																												
0		+											-		4						-	+	+				+	+	+
$\frac{\pi}{6}$		-					_						_		3						_		_	_				_	_
$\frac{2\pi}{6} = \frac{\pi}{3}$																													
$\frac{3\pi}{6} = \frac{\pi}{2}$																													
$\frac{4\pi}{6} = \frac{2\pi}{3}$															-1-						-		1					+	
$\frac{5\pi}{6}$		-2π	-11π/6	-5π/3	-3π/2	-4π/3	-7π/6	δ -π	-5π	ī/6 −2	2π/3	-π/2	-π/3	-π/6	0	π	6 т	/3	π/2	2π/3	5π/6	π	7π/6	4π/3	3 3	π/2 ξ	iπ/3	11π/6	2π
$\frac{6\pi}{6} = \pi$		+		_			_						_		1				-		-		+	_				+	+
$\frac{7\pi}{6}$															-2														
$\frac{8\pi}{6} = \frac{4\pi}{3}$																													
$\frac{9\pi}{6} = \frac{3\pi}{2}$															-3														
$\frac{10\pi}{6} = \frac{5\pi}{3}$		+													-4								+					+	+
$\frac{11\pi}{6}$																													
$\frac{12\pi}{\epsilon} = 2\pi$																													

Properties of the Tangent Function

Domain:

Range:

Period:

Part 4: Graphing Reciprocal Trig Functions

Reci	procal Identities	
$csc \theta =$	sec $\theta =$	$cot \theta =$

The graph of a reciprocal trig function is related to the graph of its corresponding primary trig function in the following ways:

- Reciprocal has a vertical asymptote at each zero of its primary trig function
- Has the same positive/negative intervals but intervals of increasing/decreasing are reversed
- y-values of 1 and -1 do not change and therefore this is where the reciprocal and primary intersect
- Local min points of the primary become local max of the reciprocal and vice versa.

Example 4: Complete the following table of values for the function $f(x) = \csc(x)$. Use the reciprocal identity to find *y*-values.

Properties of the Cosecant Function

Domain:

Range:

Period:

Example 5: Complete the following table of values for the function $f(x) = \sec(x)$. Use the reciprocal identity to find *y*-values.

Properties of the Secant Function

Domain:

Range:

Period:

Example 6: Complete the following table of values for the function $f(x) = \cot(x)$. Use the reciprocal identity to find *y*-values.

Properties of the Cotangent Function

Domain:

Range:

Period: