L3 – Applications of the Dot Product

Unit 5

MCV4U Jensen

Warm-Up

Example 1: A desk is pushed with a force of 50 N at an angle of 45 degrees below the horizontal. If the desk is pushed 5 meters, how much work is done?

Remember: Mechanical work is the product of the magnitude of the displacement travelled by an object and the magnitude of the force applied in the direction of the motion.

Part 1: Angle Between 2 Vectors

To determine the angle between two vectors, you can rearrange the dot product formula, $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$, to isolate $\cos \theta$:

Example 2: Determine the angle between each pair of vectors.

a)
$$\vec{g} = [5, 1]$$
 and $\vec{h} = [-3, 8]$

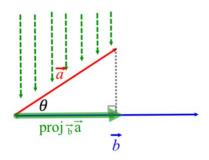
b)
$$\vec{a} = [-3, 6]$$
 and $\vec{b} = [4, 2]$

Part 2: Vector Projections

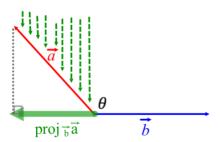
You can think of a vector projection like a shadow. The vertical arrows in the diagrams represent light from above.

Think of the projection of \vec{a} on \vec{b} as the shadow that \vec{a} casts on \vec{b} .

If the angle between \vec{a} and \vec{b} is less than 90°, then the projection of \vec{a} on \vec{b} , or $proj_{\vec{b}}$ \vec{a} , is the vector component of \vec{a} in the direction of \vec{b} .

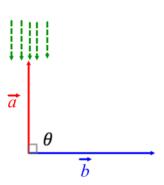


If the angle between \vec{a} and \vec{b} is between 90° and 180°, the direction of $proj_{\vec{b}}$ \vec{a} is in the opposite direction of \vec{b} .



If \vec{a} is perpendicular to \vec{b} , then \vec{a} casts 'no shadow' on to \vec{b} . So if $\theta=90^\circ$, $proj_{\ \vec{b}}\ \vec{a}=0$.

Note: This is why the dot product $\vec{a} \cdot \vec{b}$ would be zero for perpendicular vectors.



Formulas for Vector Projection:

Geometric Formulas:

Cartesian Formulas:

OR

Formulas for Magnitude of Vector Projection:

If
$$0^{\circ} < \theta < 90^{\circ}$$

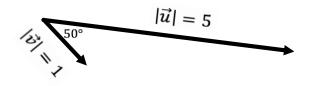
OR

If
$$90^{\circ} < \theta < 180^{\circ}$$

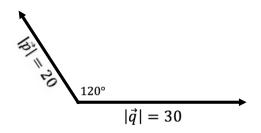
Note: $\frac{\vec{b}}{|\vec{b}|}$ is a unit vector in the direction of \vec{b} . Sometimes the symbol \hat{b} is used to denote a unit vector in the direction of \vec{b} .

Example 3: Determine the following projections of one vector on another.

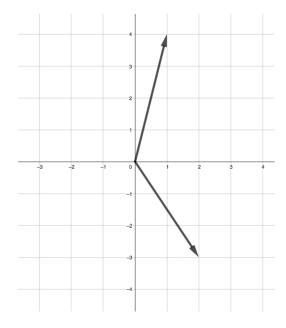
a) Determine the projection of \vec{u} on \vec{v}



b) Determine $proj_{\ \vec{q}} \ \vec{p}$

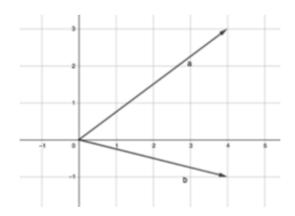


c) Determine the projection of $\vec{d}=[2,-3]$ on $\vec{c}=[1,4]$



d) Find the magnitude of the projection of $\vec{a} = [4,3]$ on $\vec{b} = [4,-1]$

e) Find the projection of $\vec{a}=[4,3]$ on $\vec{b}=[4,-1]$



Part 3: Dot Product with Sales

Example 4: A shoe store sold 350 pairs of Nike shoes and 275 pairs of Adidas shoes in a year. Nike shoes sell for \$175 and Adidas shoes sell for \$250.

a) Write a Cartesian vector, \vec{s} , to represent the numbers of pairs of shoes sold.

b) Write a Cartesian vector, \vec{p} , to represent the prices of the shoes.

c) Find the dot product $\vec{s} \cdot \vec{p}$. What does this dot product represent?