## Warm-Up

Example 1: A desk is pushed with a force of 50 N at an angle of 45 degrees below the horizontal. If the desk is pushed 5 meters, how much work is done?

Remember: Mechanical work is the product of the magnitude of the displacement travelled by an object and the magnitude of the force applied in the direction of the motion.

## Part 1: Angle Between 2 Vectors

To determine the angle between two vectors, you can rearrange the dot product formula, $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$, to isolate $\cos \theta$ :

Example 2: Determine the angle between each pair of vectors.
a) $\vec{g}=[5,1]$ and $\vec{h}=[-3,8]$
b) $\vec{a}=[-3,6]$ and $\vec{b}=[4,2]$

You can think of a vector projection like a shadow. The vertical arrows in the diagrams represent light from above.

Think of the projection of $\vec{a}$ on $\vec{b}$ as the shadow that $\vec{a}$ casts on $\vec{b}$.
If the angle between $\vec{a}$ and $\vec{b}$ is less than $90^{\circ}$, then the projection of $\vec{a}$ on $\vec{b}$, or $\operatorname{proj}_{\vec{b}} \vec{a}$, is the vector component of $\vec{a}$ in the direction of $\vec{b}$.


If the angle between $\vec{a}$ and $\vec{b}$ is between $90^{\circ}$ and $180^{\circ}$, the direction of $\operatorname{proj}_{\vec{b}} \vec{a}$ is in the opposite direction of $\vec{b}$.


If $\vec{a}$ is perpendicular to $\vec{b}$, then $\vec{a}$ casts 'no shadow' on to $\vec{b}$. So if $\theta=90^{\circ}$, $\operatorname{proj}_{\vec{b}} \vec{a}=0$.

Note: This is why the dot product $\vec{a} \cdot \vec{b}$ would be zero for perpendicular vectors.


## Formulas for Vector Projection:

Geometric Formulas:

## Cartesian Formulas:

OR

## Formulas for Magnitude of Vector Projection:

If $0^{\circ}<\theta<90^{\circ}$

OR
If $90^{\circ}<\theta<180^{\circ}$

Note: $\frac{\vec{b}}{|\vec{b}|}$ is a unit vector in the direction of $\vec{b}$. Sometimes the symbol $\hat{b}$ is used to denote a unit vector in the direction of $\vec{b}$.

Example 3: Determine the following projections of one vector on another.
a) Determine the projection of $\vec{u}$ on $\vec{v}$

b) Determine $\operatorname{proj}_{\vec{q}} \vec{p}$

c) Determine the projection of $\vec{d}=[2,-3]$ on $\vec{c}=[1,4]$

d) Find the magnitude of the projection of $\vec{a}=[4,3]$ on $\vec{b}=[4,-1]$
e) Find the projection of $\vec{a}=[4,3]$ on $\vec{b}=[4,-1]$


## Part 3: Dot Product with Sales

Example 4: A shoe store sold 350 pairs of Nike shoes and 275 pairs of Adidas shoes in a year. Nike shoes sell for $\$ 175$ and Adidas shoes sell for $\$ 250$.
a) Write a Cartesian vector, $\vec{s}$, to represent the numbers of pairs of shoes sold.
b) Write a Cartesian vector, $\vec{p}$, to represent the prices of the shoes.
c) Find the dot product $\vec{s} \cdot \vec{p}$. What does this dot product represent?

