Part 1: Proof of Product Law of Logarithms

Let $x=\log _{b} m$ and $y=\log _{b} n$
Written in exponential form:
$b^{x}=m$ and $b^{y}=n$
$m n=b^{x} b^{y}$
$m n=b^{x+y}$
$\log _{b}(m n)=x+y$
$\log _{b}(m n)=\log _{b} m+\log _{b} n$

Part 2: Summary of Log Rules

Power Law of Logarithms	$\log _{b} x^{n}=n \log _{b} x \quad$ for $b>0, b \neq 1, x>0$
Product Law of Logarithms	$\log _{b}(m n)=\log _{b} m+\log _{b} n \quad$ for $b>0, b \neq 1, m>0, n>0$
Quotient Law of Logarithms	$\log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n \quad$ for $b>0, b \neq 1, m>0, n>0$
Change of Base Formula	$\log _{b} m=\frac{\log _{m}}{\log b}, m>0, b>0, b \neq 1$
Exponential to Logarithmic	$y=b^{x} \rightarrow x=\log _{b} y$
Logarithmic to Exponential	$y=\log _{b} x \rightarrow x=b^{y}$
Other useful tips	$\log _{a}\left(a^{b}\right)=b \quad \log a=\log _{10} a \quad \log _{b} b=1$

Part 3: Practice Using Log Rules

Example 1: Write as a single logarithm
a) $\log _{5} 6+\log _{5} 8-\log _{5} 16$
$=\log _{5}\left(\frac{6 \times 8}{16}\right)$
$=\log _{5} 3$
b) $\log x+\log y+\log (3 x)-\log y$
$=\log x+\log (3 x) \quad$ Started by collecting like terms. Must have same base and argument.
$=\log [(x)(3 x)]$
$=\log \left(3 x^{2}\right)$
Can't use power law because the exponent 2 applies only to x, not to $3 x$.
c) $\frac{\log _{2} 7}{\log _{2} 5}$
$=\log _{5} 7$
Used change of base formula.
d) $\log 12-3 \log 2+2 \log 3$

$$
\begin{aligned}
& =\log 12-\log 2^{3}+\log 3^{2} \\
& =\log 12-\log 8+\log 9 \\
& =\log \left(\frac{12 \times 9}{8}\right) \\
& =\log \left(\frac{27}{2}\right)
\end{aligned}
$$

Example 2: Write as a single logarithm and then evaluate
a) $\log _{8} 4+\log _{8} 16$
b) $\log _{3} 405-\log _{3} 5$
c) $2 \log 5+\frac{1}{2} \log 16$
$=\log _{8}(4 \times 16)$
$=\log _{3}\left(\frac{405}{5}\right)$
$=\log 5^{2}+\log \sqrt{16}$
$=\log _{8} 64$
$=\log _{3} 81$
$=\frac{\log 64}{\log 8}$
$=\frac{\log 81}{\log 3}$
$=\log (25 \times 4)$
$=2$

$$
=\log 100
$$

$$
=4
$$

$$
=2
$$

Example 3: Write the Logarithm as a Sum or Difference of Logarithms
a) $\log _{3}(x y)$
b) $\log 20$
c) $\log \left(a b^{2} c\right)$
$=\log _{3} x+\log _{3} y$
$=\log 4+\log 5$

$$
\begin{aligned}
& =\log a+\log b^{2}+\log c \\
& =\log a+2 \log b+\log c
\end{aligned}
$$

Example 4: Simplify the following algebraic expressions
a) $\log \left(\frac{\sqrt{x}}{x^{2}}\right)$
b) $\log (\sqrt{x})^{3}+\log x^{2}-\log \sqrt{x}$
c) $\log (2 x-2)-\log \left(x^{2}-1\right)$
$=\log \left(\frac{x^{\frac{1}{2}}}{x^{\frac{4}{2}}}\right)$
$=\log x^{\frac{3}{2}}+\log x^{2}-\log x^{\frac{1}{2}}$
$=\log \left(\frac{2 x-2}{x^{2}-1}\right)$
$=\log x^{-\frac{3}{2}}$
$=\frac{3}{2} \log x+2 \log x-\frac{1}{2} \log x$
$=\log \left[\frac{2(x-1)}{(x-1)(x+1)}\right]$
$=-\frac{3}{2} \log x$
$=\frac{3}{2} \log x+\frac{4}{2} \log x-\frac{1}{2} \log x$
$=\log \frac{2}{x+1}$

