Warm-Up

Example 1: A desk is pushed with a force of 50 N at an angle of 45 degrees below the horizontal. If the desk is pushed 5 meters, how much work is done?
$W=\vec{f} \cdot \vec{s}$
$W=|\vec{f}||\vec{s}| \cos \theta$
$W=50(5) \cos 45$
$W=250\left(\frac{1}{\sqrt{2}}\right)$

Remember: Mechanical work is the product of the magnitude of the displacement travelled by an object and the magnitude of the force applied in the direction of the motion.

$$
W=\frac{250}{\sqrt{2}} \text { or } 125 \sqrt{2} \text { joules }
$$

Part 1: Angle Between 2 Vectors

To determine the angle between two vectors, you can rearrange the dot product formula, $\vec{a} \cdot \vec{b}=|\vec{a}||\vec{b}| \cos \theta$, to isolate $\cos \theta$:

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Example 2: Determine the angle between each pair of vectors.
a) $\vec{g}=[5,1]$ and $\vec{h}=[-3,8]$
b) $\vec{a}=[-3,6]$ and $\vec{b}=[4,2]$

$$
\begin{aligned}
& \cos \theta=\frac{\vec{g} \cdot \vec{h}}{|\vec{g}||\vec{h}|} \\
& \cos \theta=\frac{5(-3)+1(8)}{\left(\sqrt{(5)^{2}+(1)^{2}}\right)\left(\sqrt{(-3)^{2}+(8)^{2}}\right)} \\
& \cos \theta=\frac{-7}{(\sqrt{26})(\sqrt{73})} \\
& \theta \cong 99.2^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} \\
& \cos \theta=\frac{(-3)(4)+6(2)}{\left(\sqrt{(-3)^{2}+(6)^{2}}\right)\left(\sqrt{(4)^{2}+(2)^{2}}\right)} \\
& \cos \theta=\frac{0}{(\sqrt{45})(\sqrt{20})} \\
& \theta=90^{\circ}
\end{aligned}
$$

Part 2: Vector Projections

You can think of a vector projection like a shadow. The vertical arrows in the diagrams represent light from above.

Think of the projection of \vec{a} on \vec{b} as the shadow that \vec{a} casts on \vec{b}.
If the angle between \vec{a} and \vec{b} is less than 90°, then the projection of \vec{a} on \vec{b}, or $\operatorname{proj}_{\vec{b}} \vec{a}$, is the vector component of \vec{a} in the direction of \vec{b}.

If the angle between \vec{a} and \vec{b} is between 90° and 180°, the direction of $\operatorname{proj}_{\vec{b}} \vec{a}$ is in the opposite direction of \vec{b}.

If \vec{a} is perpendicular to \vec{b}, then \vec{a} casts 'no shadow' on to \vec{b}. So if $\theta=90^{\circ}$, $\operatorname{proj}_{\vec{b}} \vec{a}=0$.

Note: This is why the dot product $\vec{a} \cdot \vec{b}$ would be zero for perpendicular vectors.

Formulas for Vector Projection:

Geometric Formulas:

$$
\begin{aligned}
& \operatorname{proj}_{\vec{b}} \vec{a}=|\vec{a}| \cos \theta(\hat{b}) \\
& \operatorname{proj}_{\vec{b}} \vec{a}=|\vec{a}| \cos \theta\left(\frac{\vec{b}}{|\vec{b}|}\right)
\end{aligned}
$$

OR

Formulas for Magnitude of Vector Projection:

If $0^{\circ}<\theta<90^{\circ} \quad\left|\operatorname{proj}_{\vec{b}} \vec{a}\right|=|\vec{a}| \cos \theta$
OR

Cartesian Formulas:

$\operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}(\hat{b})$
$\operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\left(\frac{\vec{b}}{|\vec{b}|}\right)$
$\operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}}(\vec{b})$

$$
\left|\operatorname{proj}_{\vec{b}} \vec{a}\right|=\left|\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right|
$$

If $90^{\circ}<\theta<180^{\circ} \quad\left|\operatorname{proj}_{\vec{b}} \vec{a}\right|=-|\vec{a}| \cos \theta$

Note: $\frac{\vec{b}}{|\vec{b}|}$ is a unit vector in the direction of \vec{b}. Sometimes the symbol \hat{b} is used to denote a unit vector in the direction of \vec{b}.

Example 3: Determine the following projections of one vector on another.
a) Determine the projection of \vec{u} on \vec{v}

$$
\begin{aligned}
& \operatorname{proj}_{\vec{v}} \vec{u}=|\vec{u}| \cos \theta(\hat{v}) \\
& \operatorname{proj}_{\vec{v}} \vec{u}=5 \cos 50(\hat{v}) \\
& \operatorname{proj}_{\vec{v}} \vec{u} \cong 3.2 \hat{v}
\end{aligned}
$$

3.2 units in the same direction as \vec{v}

$$
\begin{aligned}
& \operatorname{proj}_{\vec{q}} \vec{p}=|\vec{p}| \cos \theta(\hat{q}) \\
& \operatorname{proj}_{\vec{v}} \vec{u}=20 \cos 120(\hat{q}) \\
& \operatorname{proj}_{\vec{v}} \vec{u} \cong-10 \hat{q}
\end{aligned}
$$

10 units in the opposite direction as \vec{q}
c) Determine the projection of $\vec{d}=[2,-3]$ on $\vec{c}=[1,4]$

$$
\begin{aligned}
& \operatorname{proj}_{\vec{c}} \vec{d}=\frac{\vec{d} \cdot \vec{c}}{\vec{c} \cdot \vec{c}}(\vec{c})=\frac{\vec{d} \cdot \vec{c}}{|\vec{c}|^{2}}(\vec{c}) \\
& \operatorname{proj}_{\vec{c}} \vec{d}=\left(\frac{2(1)+(-3)(4)}{1^{2}+4^{2}}\right)[1,4] \\
& \operatorname{proj}_{\vec{c}} \vec{d}=\left(\frac{-10}{17}\right)[1,4] \\
& \operatorname{proj}_{\vec{c}} \vec{d}=\left[\frac{-10}{17}, \frac{-40}{17}\right]
\end{aligned}
$$

d) Find the magnitude of the projection of $\vec{a}=[4,3]$ on $\vec{b}=[4,-1]$

$$
\begin{aligned}
& \left|\operatorname{proj}_{\vec{b}} \vec{a}\right|=\left|\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}\right| \\
& \left|\operatorname{proj}_{\vec{b}} \vec{a}\right|=\left|\frac{4(4)+(3)(-1)}{\sqrt{(4)^{2}+(-1)^{2}}}\right| \\
& \left|\operatorname{proj}_{\vec{b}} \vec{a}\right|=\frac{13}{\sqrt{17}}
\end{aligned}
$$

e) Find the projection of $\vec{a}=[4,3]$ on $\vec{b}=[4,-1]$

$$
\begin{aligned}
& \operatorname{proj}_{\vec{b}} \vec{a}=\frac{\vec{a} \cdot \vec{b}}{\vec{b} \cdot \vec{b}}(\vec{b}) \\
& \operatorname{proj}_{\vec{b}} \vec{a}=\frac{4(4)+(3)(-1)}{(4)^{2}+(-1)^{2}}[4,-1] \\
& \operatorname{proj}_{\vec{b}} \vec{a}=\frac{13}{17}[4,-1] \\
& \operatorname{proj}_{\vec{b}} \vec{a}=\left[\frac{52}{17}, \frac{-13}{17}\right]
\end{aligned}
$$

Part 3: Dot Product with Sales

Example 4: A shoe store sold 350 pairs of Nike shoes and 275 pairs of Adidas shoes in a year. Nike shoes sell for $\$ 175$ and Adidas shoes sell for $\$ 250$.
a) Write a Cartesian vector, \vec{s}, to represent the numbers of pairs of shoes sold.
$\vec{s}=[350,275]$
b) Write a Cartesian vector, \vec{p}, to represent the prices of the shoes.
$\vec{p}=[175,250]$
c) Find the dot product $\vec{s} \cdot \vec{p}$. What does this dot product represent?
$\vec{s} \cdot \vec{p}=350(175)+275(250)$
$\vec{s} \cdot \vec{p}=130000$
The dot product represents the revenue, $\$ 130000$, from sales of the shoes.

