Part 1: Review of e and $\ln x$

Properties of *e*:

Jensen

- $e = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n \approx$
- *e* is an ______ number, similar to π . They are non-terminating and non-repeating.

• $\log_e x$ is known as the ______ and can be written as ______.

- Many naturally occurring phenomena can be modelled using base-*e* exponential and logarithmic functions.
- $\log_e e = \ln e =$

Example 1: Graph the functions $y = e^x$ and $y = \ln x$

$y = e^x$	
x	у

$y = \ln x$	
x	у

Note: $y = \ln x$ is the inverse of $y = e^x$

Example 2: The population of a bacterial culture as a function of time is given by the equation $P(t) = 200e^{0.094t}$, where P is the population after t days.

a) What is the initial population of the bacterial culture?

b) Estimate the population after 3 days.

c) How long will the bacterial culture take to double its population?

d) Re-write this function as an exponential function having base 2.

Use the exponential growth formula:

$$A(t) = A_0(2)^{\frac{t}{D}}$$

where D is the doubling period

Part 2: Derivatives of Exponential Functions

Rule: If $f(x) = b^x$, $f'(x) = b^x \ln b$

Example 3: Determine the derivative of each function

Notice that $\frac{d}{dx}e^x = e^x$

Example 4: Find the equation of the line that is tangent to the curve $y = 2e^x$ at $x = \ln 3$.

Example 5: A biologist is studying the increase in the population of a particular insect in a provincial park. The population triples every week. Assume the population continues to increase at this rate. Initially, there are 100 insects.

a) Determine the number of insects present after 4 weeks.

b) How fast is the number of insects increasingi) when they are initially discovered?

ii) at the end of 4 weeks?