_ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _ _ _ _ .

The Quotient Rule:

If
$$h(x) = \frac{f(x)}{g(x)}$$
, then $h'(x) = \frac{f'(x)g(x) - g'(x)f(x)}{[g(x)]^2}$

_ _ _

_ _ _ _ _ _ _ _ _ _

_ _

Proof:

Example 1: Find the derivative of each of the following:

a)
$$f(x) = \frac{3x-4}{x^2+5}$$

b) $g(x) = \frac{6x-5}{x^3+4}$

c)
$$h(x) = \frac{2x+8}{\sqrt{x}}$$
 d) $r(x) = \frac{x+3}{\sqrt{x^2-1}}$

Note:
$$\frac{d}{dx}\sqrt{x^2-1}$$
 from part d) uses the 'chain rule'. We will learn this in depth in the next lesson.

Example 2: Determine an equation for the tangent to the curve $y = \frac{x^2-3}{5-x}$ at x = 2.

Example 3: Determine the coordinates of each point on the graph of $h(x) = \frac{2x+8}{\sqrt{x}}$ where the tangent is horizontal.

