	L4 – Rational Functions	Unit 2	
Î Î	MCV4U		Ì
I I	Jensen		
L			_ !

<u>Part 1: Warm-Up</u>

Find the intervals of concavity and the coordinates of any points of inflection for $y = \frac{1}{3}x^3 - 12x^2 + 5$

Remember:

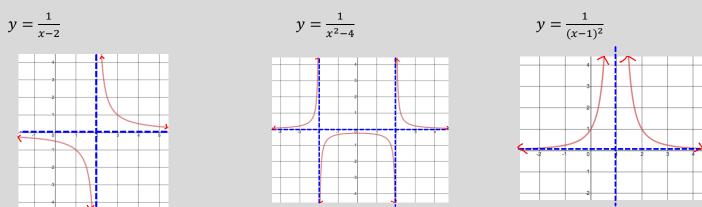
f''(x) = 0 or undefined is a possible POI

If f''(x) < 0, f(x) is concave DOWN

If f''(x) > 0, f(x) is concave UP

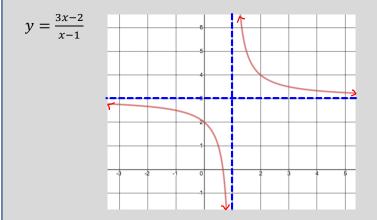
Part 2: Reminder of some simple rational functions

Degree of denominator > degree of numerator:



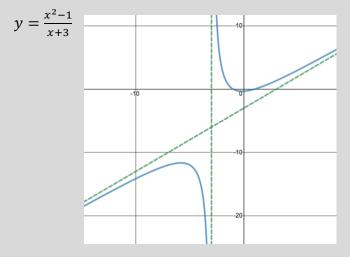
Notice: Horizontal asymptotes all are at y = 0Vertical asymptotes are at zeros of the denominator

Degree of denominator = degree of numerator:



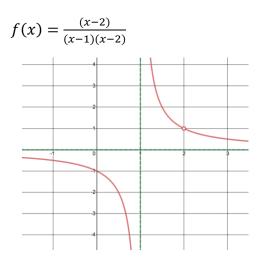
Notice: HA at quotient of leading coefficients VA at zero of the denominator

Degree of denominator < degree of numerator:



Notice: Oblique asymptote at quotient of numerator and denominator; VA at zero of the denominator

Vertical Asymptote vs. Hole in Graph



Notice: VA at
$$x = 1$$
; $f(1) = \frac{-1}{0}$
Hole at $(2, 1)$; $f(2) = \frac{0}{0}$

(remove discontinuity to find y-value of hole)

Conclusion: If
$$f(a) = \frac{\#}{0}$$
, $x = a$ is a VA
If $f(a) = \frac{0}{0}$, there is a hole in the graph when $x = a$

Limit Definition of Asymptotes:

For the rational function $y = \frac{f(x)}{g(x)}$

There is a Vertical Asymptote at x = a when g(a) = 0 and $\lim_{x \to a} \frac{f(x)}{g(x)} = \pm \infty$

There is a Horizontal Asymptote at y = L when $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = L$

Note: Horizontal asymptote only exists if the degree of the numerator is ______ the degree of the denominator.

Part 3: Apply What You Know to Graph Rational Functions

Example 1: State the Horizontal Asymptotes of the following functions:

a)
$$y = \frac{3x^2+2}{6x^2-4x-1}$$

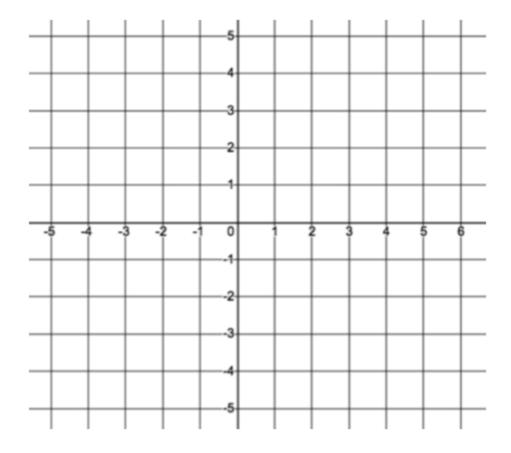
b) $y = \frac{3x^2+2}{6x^3-4x-1}$

Example 2: Consider the function $f(x) = \frac{1}{(x+2)(x-3)}$

a) Find the asymptotes

b) Find the one-sided limits as the x-values approach the vertical asymptotes (sub values very close to the limit for x, and find what the value of the function is approaching)

c) Sketch the graph



- **Example 3:** Consider the function $f(x) = \frac{1}{x^2+1}$
- a) Where are the vertical and horizontal asymptotes?

b) Find any local max/min points and the intervals of increase/decrease

c) Find the points of inflection

d) Sketch a graph of the function

