

Part 1: Warm-Up

Find the intervals of concavity and the coordinates of any points of inflection for $y=\frac{1}{3} x^{3}-12 x^{2}+5$

Remember:
$f^{\prime \prime}(x)=0$ or undefined is a possible POI
If $f^{\prime \prime}(x)<0, f(x)$ is concave DOWN
If $f^{\prime \prime}(x)>0, f(x)$ is concave UP

Part 2: Reminder of some simple rational functions

Degree of denominator > degree of numerator:

$y=\frac{1}{x-2}$

$y=\frac{1}{x^{2}-4}$

$$
y=\frac{1}{(x-1)^{2}}
$$

Notice: Horizontal asymptotes all are at $y=0$
Vertical asymptotes are at zeros of the denominator

Degree of denominator $=$ degree of numerator:
$y=\frac{3 x-2}{x-1}$

Notice: HA at quotient of leading coefficients VA at zero of the denominator

Degree of denominator < degree of numerator:

$y=\frac{x^{2}-1}{x+3}$

Notice: Oblique asymptote at quotient of numerator and denominator; VA at zero of the denominator
$f(x)=\frac{(x-2)}{(x-1)(x-2)}$

Notice: VA at $x=1 ; f(1)=\frac{-1}{0}$
Hole at $(2,1) ; f(2)=\frac{0}{0}$
(remove discontinuity to find y-value of hole)

Conclusion: If $f(a)=\frac{\#}{0}, x=a$ is a VA
If $f(a)=\frac{0}{0}$, there is a hole in the graph when $x=a$

Limit Definition of Asymptotes:

For the rational function $y=\frac{f(x)}{g(x)}$
There is a Vertical Asymptote at $x=a$ when $g(a)=0$ and $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}= \pm \infty$

There is a Horizontal Asymptote at $y=L$ when $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=L$
Note: Horizontal asymptote only exists if the degree of the numerator is \qquad the degree of the denominator.

Part 3: Apply What You Know to Graph Rational Functions

Example 1: State the Horizontal Asymptotes of the following functions:
a) $y=\frac{3 x^{2}+2}{6 x^{2}-4 x-1}$
b) $y=\frac{3 x^{2}+2}{6 x^{3}-4 x-1}$

Example 2: Consider the function $f(x)=\frac{1}{(x+2)(x-3)}$
a) Find the asymptotes
b) Find the one-sided limits as the x-values approach the vertical asymptotes (sub values very close to the limit for x, and find what the value of the function is approaching)
c) Sketch the graph

Example 3: Consider the function $f(x)=\frac{1}{x^{2}+1}$
a) Where are the vertical and horizontal asymptotes?
b) Find any local max/min points and the intervals of increase/decrease
c) Find the points of inflection
d) Sketch a graph of the function

