Part 1: Review of e and $\ln x$

Properties of *e*:

- $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \approx 2.718\ 281\ 828\ 459$
- *e* is an <u>irrational</u> number, similar to π . They are non-terminating and non-repeating.
- log_e x is known as the <u>natural logarithm</u> and can be written as <u>ln x</u>
- Many naturally occurring phenomena can be modelled using base-*e* exponential and logarithmic functions.
- $\log_e e = \ln e = 1$

Example 1: Graph the functions $y = e^x$ and $y = \ln x$

$y = e^x$		
x	y	
-1	0.37	
0	1	
1	2.72	
HA	y = 0	

$y = \ln x$		
x	у	
0.37	-1	
1	0	
2.72	1	
VA	x = 0	

Note: $y = \ln x$ is the inverse of $y = e^x$

Example 2: The population of a bacterial culture as a function of time is given by the equation $P(t) = 200e^{0.094t}$, where P is the population after t days.

a) What is the initial population of the bacterial culture?

 $P(0) = 200e^{0.094(0)}$

P(0) = 200

b) Estimate the population after 3 days.

 $P(3) = 200e^{0.094(3)}$

 $P(3)\cong 265.2$

c) How long will the bacterial culture take to double its population?

 $400 = 200e^{0.094t}$ $2 = e^{0.094t}$ $\ln 2 = \ln e^{0.094t}$ $\ln 2 = 0.094t \ln e$ $\ln 2 = 0.094t$ $t = \frac{\ln 2}{0.094}$ $t \approx 7.37 \text{ days}$

d) Re-write this function as an exponential function having base 2.

 $P(t) = 200(2)^{\frac{t}{7.37}}$

Use the exponential growth formula:

 $A(t) = A_0(2)^{\frac{t}{D}}$

where D is the doubling period

Part 2: Derivatives of Exponential Functions

Rule: If $f(x) = b^x$, $f'(x) = b^x \ln b$

Example 3: Determine the derivative of each function

a)
$$y = 2^{x}$$

b) $y = e^{x}$
 $y' = 2^{x} \ln 2$
 $y' = e^{x} (1)$
 $y' = e^{x}$
c) $y = 3(2)^{x}$
d) $y = 3^{x} + 1$
 $y' = 3^{x} \ln 3$
 $y' = e^{x}$

Notice that $\frac{d}{dx}e^x = e^x$

Example 4: Find the equation of the line that is tangent to the curve $y = 2e^x$ at $x = \ln 3$.

Slope of tangent line:	Point on tangent line:	Equation of tangent line:
$y' = 2e^x$	$y = 2e^x$	y = mx + b
$y'(\ln 3) = 2e^{\ln 3}$	When $x = \ln 3$	$6 = 6(\ln 3) + b$
$y'(\ln 3) = 2(3)$	$y = 2e^{\ln 3}$	$b = 6 - 6 \ln 3$
$y'(\ln 3) = 6$	y = 2(3)	$y = 6x + 6 - 6\ln 3$
m = 6	y = 6	

Example 5: A biologist is studying the increase in the population of a particular insect in a provincial park. The population triples every week. Assume the population continues to increase at this rate. Initially, there are 100 insects.

a) Determine the number of insects present after 4 weeks.

 $P(t) = 100(3)^t$ $P(4) = 100(3)^4$ P(4) = 8100 b) How fast is the number of insects increasingi) when they are initially discovered?

 $P'(t) = 100(3)^t \ln 3$

 $P'(0) = 100(3)^0 \ln 3$

 $P'(0) \cong 109.9$

At the beginning, it is increasing by 109.9 insects per week

ii) at the end of 4 weeks?

 $P'(4) = 100(3)^4 \ln 3$

 $P'(4) \cong 8898.8$ insects per week