```
L4 - Rational Functions
Unit 2
MCV4U
; Jensen
```


## Part 1: Warm-Up

Find the intervals of concavity and the coordinates of any points of inflection for $y=\frac{1}{3} x^{3}-12 x^{2}+5$
$y^{\prime}=x^{2}-24 x$
$y^{\prime \prime}=2 x-24$
$0=2(x-12)$
$x=12$

Possible point of inflection:

## Remember:

$f^{\prime \prime}(x)=0$ or undefined is a possible POI
If $f^{\prime \prime}(x)<0, f(x)$ is concave DOWN
If $f^{\prime \prime}(x)>0, f(x)$ is concave UP
$y=\frac{1}{3}(12)^{3}-12(12)^{2}+5=-1147$
$(12,-1147)$ is a possible point of inflection

| ${ }^{-\infty}$ |  |  |
| :---: | :---: | :---: |
| Test value for $x$ | 11 | 13 |
| $y^{\prime \prime}$ | - | + |
| $y$ | Concave DOWN | Concave UP |
|  |  |  |

Concave up: $(12, \infty)$
Concave down: $(-\infty, 12)$

## Part 2: Reminder of some simple rational functions

## Degree of denominator > degree of numerator:

$y=\frac{1}{x-2}$

$y=\frac{1}{x^{2}-4}$


$$
y=\frac{1}{(x-1)^{2}}
$$



Notice: Horizontal asymptotes all are at $y=0$
Vertical asymptotes are at zeros of the denominator

Degree of denominator $=$ degree of numerator:
$y=\frac{3 x-2}{x-1}$


Notice: HA at quotient of leading coefficients VA at zero of the denominator

## Degree of denominator < degree of numerator:

$y=\frac{x^{2}-1}{x+3}$


Notice: Oblique asymptote at quotient of numerator and denominator; VA at zero of the denominator
$f(x)=\frac{(x-2)}{(x-1)(x-2)}$


Notice: VA at $x=1 ; f(1)=\frac{-1}{0}$
Hole at $(2,1) ; f(2)=\frac{0}{0}$
(remove discontinuity to find $y$-value of hole)

Conclusion: If $f(a)=\frac{\#}{0}, x=a$ is a VA
If $f(a)=\frac{0}{0}$, there is a hole in the graph when $x=a$

## Limit Definition of Asymptotes:

For the rational function $y=\frac{f(x)}{g(x)}$
There is a Vertical Asymptote at $x=a$ when $g(a)=0$ and $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}= \pm \infty$

There is a Horizontal Asymptote at $y=L$ when $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{g(x)}=L$
Note: Horizontal asymptote only exists if the degree of the numerator is less than or equal to the degree of the denominator.

## Part 3: Apply What You Know to Graph Rational Functions

Example 1: State the Horizontal Asymptotes of the following functions:
a) $y=\frac{3 x^{2}+2}{6 x^{2}-4 x-1}$
b) $y=\frac{3 x^{2}+2}{6 x^{3}-4 x-1}$
$\mathrm{HA}: y=\frac{3}{6}=\frac{1}{2}$
$\mathrm{HA}: y=0$

Example 2: Consider the function $f(x)=\frac{1}{(x+2)(x-3)}$
a) Find the asymptotes
$\mathrm{HA}: y=0$
VA: $x=-2$ and $x=3$
b) Find the one-sided limits as the $x$-values approach the vertical asymptotes (sub values very close to the limit for $x$, and find what the value of the function is approaching)
$\lim _{x \rightarrow-2^{-}} \frac{1}{(x+2)(x-3)}=\infty$
Test: $f(-2.00001)=19999.96$; therefore going towards $+\infty$
$\lim _{x \rightarrow-2^{+}} \frac{1}{(x+2)(x-3)}=-\infty$
Test: $f(-1.9999)=-2000.04$; therefore going towards $-\infty$
$\lim _{x \rightarrow 3^{-}} \frac{1}{(x+2)(x-3)}=-\infty$
Test: $f(2.9999)=-2000.04$; therefore going towards $-\infty$
$\lim _{x \rightarrow 3^{+}} \frac{1}{(x+2)(x-3)}=\infty$
Test: $f(3.00001)=19999.96$; therefore going towards $+\infty$
c) Sketch the graph


Example 3: Consider the function $f(x)=\frac{1}{x^{2}+1}$
a) Where are the vertical and horizontal asymptotes?

HA: $y=0$
VA: none $\quad x^{2}+1 \neq 0$
b) Find any local max/min points and the intervals of increase/decrease
$f^{\prime}(x)=\frac{0\left(x^{2}+1\right)-2 x(1)}{\left(x^{2}+1\right)^{2}}$
Find Critical Numbers:
$f^{\prime}(x)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}$

$$
\begin{aligned}
& 0=\frac{-2 x}{\left(x^{2}+1\right)^{2}} \\
& 0=-2 x \\
& x=0 \\
& x=0
\end{aligned}
$$

Critical Point: $(0,1)$
$f(0)=1$

| $-\infty$ |  |  |
| :---: | :---: | :---: |
| Test value for $x$ | -1 | 1 |
| $f^{\prime}(x)$ | + | - |
| $f(x)$ | Increasing | Decreasing |
|  | Local max <br> at $(0,1)$ |  |

Increasing: $(-\infty, 0)$
Decreasing: $(0, \infty)$
c) Find the points of inflection
$f^{\prime}(x)=\frac{-2 x}{\left(x^{2}+1\right)^{2}}$
Find Possible POI's:
$f^{\prime \prime}(x)=\frac{-2\left(x^{2}+1\right)^{2}-2\left(x^{2}+1\right)(2 x)(-2 x)}{\left(x^{2}+1\right)^{4}} \quad 0=\frac{6 x^{2}-2}{\left(x^{2}+1\right)^{3}}$
$f^{\prime \prime}(x)=\frac{-2\left(x^{2}+1\right)-2(2 x)(-2 x)}{\left(x^{2}+1\right)^{3}}$
$0=6 x^{2}-2$
$f^{\prime \prime}(x)=\frac{-2 x^{2}-2+8 x^{2}}{\left(x^{2}+1\right)^{3}}$
$x^{2}=\frac{2}{6}$
$x= \pm \frac{1}{\sqrt{3}} \cong 0.577$
$f^{\prime \prime}(x)=\frac{6 x^{2}-2}{\left(x^{2}+1\right)^{3}}$
$(0.577,0.75)$ and ( $-0.577,0.75$ )

| $-\infty$ |  | 0.577 |  |
| :---: | :---: | :---: | :---: |
| Test value for $x$ | -1 | 0 | 1 |
| $f^{\prime \prime}(x)$ | + | - | + |
| $f(x)$ | Concave UP | Concave DOWN | Concave UP |
|  | $\begin{aligned} & \text { POI at } \\ & (-0.577,0.75) \end{aligned}$ |  |  |

d) Sketch a graph of the function


