<u>Part 1: Warm-Up</u>

Find the intervals of concavity and the coordinates of any points of inflection for $y = \frac{1}{3}x^3 - 12x^2 + 5$

- $y' = x^2 24x$
- $y^{\prime\prime} = 2x 24$
- 0 = 2(x 12)

x = 12

Possible point of inflection:

$$y = \frac{1}{3}(12)^3 - 12(12)^2 + 5 = -1147$$

(12, -1147) is a possible point of inflection

- f''(x) = 0 or undefined is a possible POI
- If f''(x) < 0, f(x) is concave DOWN
- If f''(x) > 0, f(x) is concave UP

Concave up: $(12, \infty)$

Concave down: $(-\infty, 12)$

Part 2: Reminder of some simple rational functions

Degree of denominator > degree of numerator:

Notice: Horizontal asymptotes all are at y = 0Vertical asymptotes are at zeros of the denominator

Degree of denominator = degree of numerator:

Notice: HA at quotient of leading coefficients VA at zero of the denominator

Degree of denominator < degree of numerator:

Notice: Oblique asymptote at quotient of numerator and denominator; VA at zero of the denominator

Vertical Asymptote vs. Hole in Graph

Notice: VA at
$$x = 1$$
; $f(1) = \frac{-1}{0}$
Hole at $(2, 1)$; $f(2) = \frac{0}{0}$

(remove discontinuity to find y-value of hole)

Conclusion: If
$$f(a) = \frac{\#}{0}$$
, $x = a$ is a VA
If $f(a) = \frac{0}{0}$, there is a hole in the graph when $x = a$

Limit Definition of Asymptotes:

For the rational function $y = \frac{f(x)}{g(x)}$

There is a Vertical Asymptote at x = a when g(a) = 0 and $\lim_{x \to a} \frac{f(x)}{g(x)} = \pm \infty$

There is a Horizontal Asymptote at y = L when $\lim_{x \to \pm \infty} \frac{f(x)}{g(x)} = L$

Note: Horizontal asymptote only exists if the degree of the numerator is <u>less than or equal to</u> the degree of the denominator.

Part 3: Apply What You Know to Graph Rational Functions

Example 1: State the Horizontal Asymptotes of the following functions:

a)
$$y = \frac{3x^2+2}{6x^2-4x-1}$$

HA: $y = \frac{3}{6} = \frac{1}{2}$
HA: $y = 0$

Example 2: Consider the function $f(x) = \frac{1}{(x+2)(x-3)}$

a) Find the asymptotes

$$\mathsf{HA}: y = 0$$

VA: x = -2 and x = 3

b) Find the one-sided limits as the x-values approach the vertical asymptotes (sub values very close to the limit for x, and find what the value of the function is approaching)

$$\lim_{x \to -2^{-}} \frac{1}{(x+2)(x-3)} = \infty$$

Test: f(-2.00001) = 19999.96; therefore going towards $+\infty$

$$\lim_{x \to -2^+} \frac{1}{(x+2)(x-3)} = -\infty$$

Test: f(-1.9999) = -2000.04; therefore going towards $-\infty$

$$\lim_{x \to 3^{-}} \frac{1}{(x+2)(x-3)} = -\infty$$

Test: f(2.9999) = -2000.04; therefore going towards $-\infty$

$$\lim_{x \to 3^+} \frac{1}{(x+2)(x-3)} = \infty$$

Test: f(3.00001) = 19999.96; therefore going towards $+\infty$

c) Sketch the graph

Example 3: Consider the function $f(x) = \frac{1}{x^2+1}$

a) Where are the vertical and horizontal asymptotes?

HA: y = 0VA: none $x^2 + 1 \neq 0$

b) Find any local max/min points and the intervals of increase/decrease

Find Critical Numbers:
$0 = \frac{-2x}{(x^2 + 1)^2}$
0 = -2x
x = 0
x = 0
Critical Point: (0,1)
f(0) = 1

Increasing: $(-\infty, 0)$

Decreasing: $(0, \infty)$

c) Find the points of inflection

 $f'(x) = \frac{-2x}{(x^2 + 1)^2}$ Find Possible POI's: $f''(x) = \frac{-2(x^2 + 1)^2 - 2(x^2 + 1)(2x)(-2x)}{(x^2 + 1)^4}$ $0 = \frac{6x^2 - 2}{(x^2 + 1)^3}$ $0 = 6x^2 - 2$ $f''(x) = \frac{-2x^2 - 2 + 8x^2}{(x^2 + 1)^3}$ $x^2 = \frac{2}{6}$ $f''(x) = \frac{-2x^2 - 2 + 8x^2}{(x^2 + 1)^3}$ $x = \pm \frac{1}{\sqrt{3}} \approx 0.577$ $f''(x) = \frac{6x^2 - 2}{(x^2 + 1)^3}$ (0.577,0.75) and (-0.577,0.75)

d) Sketch a graph of the function

