Part 1: Try and Solve a Logarithmic Equation

Solve the equation $\log (x+5)=2 \log (x-1)$
Hint: apply the power law of logarithms to the right side of the equation

Note:
If $\log _{m} a=\log _{m} b$, then $a=b$.

To complete this lesson, you will need to remember how to change from logarithmic to exponential:

$$
y=\log _{b} x \rightarrow
$$

a) $\log (x+4)=1$

Method 1: re-write in exponential form

Method 2: express both sides as a logarithm of the same base
b) $\log _{5}(2 x-3)=2$

Part 2: Apply Factoring Strategies to Solve Equations

Example 3: Solve each equation and reject any extraneous roots
a) $\log (x-1)-1=-\log (x+2)$
b) $\log \sqrt[3]{x^{2}+48 x}=\frac{2}{3}$
c) $\log _{3} x-\log _{3}(x-4)=2$

Example 4: If $\log _{a} b=3$, then use log rules to find the value of...
a) $\log _{a} a b^{2}$
b) $\log _{b} a$

Hint: need to change the base $\log _{b} m=$

