The cross product of two vectors \vec{a} and \vec{b} in R^{3} is the vector that is to these vectors such that the vectors \vec{a}, \vec{b}, and $\vec{a} \times \vec{b}$ form a right-handed system.

Right handed system tells you to point your hand along vector \vec{a} and curl your fingers towards vector \vec{b}. Your thumb will be pointing in the direction of $\vec{a} \times \vec{b}$. Notice that $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$ point in opposite directions.

The Cross Product (Vector Product)

Sometimes the direction of the cross product is defined by either 'in to the page' or 'out of the page':

$\vec{a} \times \vec{b}$	$\vec{b} \times \vec{a}$
"Out of the page"	"In to the page"

3D visualization:
https://www.geogebra.org/3d/ivqcr3bf

Properties of Cross Product:

- $\vec{u} \times \vec{v}=-(\vec{v} \times \vec{u})$
- $\vec{u} \times(\vec{v}+\vec{w})=\vec{u} \times \vec{v}+\vec{u} \times \vec{w}$
- $(\vec{u}+\vec{v}) \times \vec{w}=\vec{u} \times \vec{w}+\vec{v} \times \vec{w}$
- If $\vec{u} \times \vec{v}=0$, and \vec{u} and \vec{v} are non-zero, then \vec{u} and \vec{v} are collinear.
- $k(\vec{u} \times \vec{v})=(k \vec{u}) \times \vec{v}=\vec{u} \times(k \vec{v})$
- $|\vec{u} \times \vec{v}|=$ the area of the parallelogram defined by \vec{u} and \vec{v}

Part 2: Cross Product of Geometric Vectors

Formula: $\vec{a} \times \vec{b}=(|\vec{a}||\vec{b}| \sin \theta) \hat{n}$
θ is the angle between the vectors
\hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b}
Example 1: If $|\vec{u}|=30,|\vec{v}|=20$, the angle between \vec{u} and \vec{v} is 40°, and \vec{u} and \vec{v} are in the plane of the page, find...
a) $\vec{u} \times \vec{v}$
b) $\vec{v} \times \vec{u}$

Part 3: Cross Product of Algebraic Vectors

Formula:

If $\vec{a}=\left[a_{1}, a_{2}, a_{3}\right]$ and $\vec{b}=\left[b_{1}, b_{2}, b_{3}\right]$
$\vec{a} \times \vec{b}=\left[a_{2} b_{3}-a_{3} b_{2}, a_{3} b_{1}-a_{1} b_{3}, a_{1} b_{2}-a_{2} b_{1}\right]$

$$
=\left(a_{2} b_{3}-a_{3} b_{2}\right) \vec{\imath}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \vec{\jmath}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \vec{k}
$$

How to set it up:

Example 2: If $\vec{p}=[-1,3,2]$ and $\vec{q}=[2,-5,6]$, calculate each of the following:
a) $\vec{p} \times \vec{q}$
b) $\vec{q} \times \vec{p}$

Example 3a: Determine the area of the parallelogram defined by the vectors $\vec{u}=[4,5,2]$ and $\vec{v}=[3,2,7]$.

Example 3b: Determine the angle between the vectors \vec{u} and \vec{v}.

