	L5 – Curve Sketching	Unit 2
i	MCV4U	i i
ł	Jensen	1
L		'

Algorithm for Curve Sketching

- **1.** Determine any restrictions in the domain. State any horizontal and vertical asymptotes or holes in the graph.
- 2. Determine the intercepts of the graph
- **3.** Determine the critical numbers of the function (where is f'(x) = 0 or undefined)
- **4.** Determine the possible points of inflection (where is f''(x)=0 or undefined)
- 5. Create a sign chart that uses the critical numbers and possible points of inflection as dividing points.
- **6.** Use the sign chart to find intervals of increase/decrease and the intervals of concavity. Use all critical numbers, possible points of inflection, and vertical asymptotes as dividing points.
- 7. Identify local extrema and points of inflection
- 8. Sketch the function

Example 1: Use the algorithm for curve sketching to analyze the key features of each of the following functions and to sketch a graph of them.

a) $g(x) = x^3 + 6x^2 + 9x$

b) $f(x) = \frac{1}{(x+1)(x-4)}$

c) $h(x) = x^4 - 5x^3 + x^2 + 21x - 18$

	10				
	5				
-3 -2	-1 0		2 3	, ,	•
	-5				
	-10				
	-15	 			
	-20				
	-				
	-25				
	-30				
	-35				