Part 1: Derivatives of Exponential Functions

Example 1: Find the derivative of each function.
a) $y=x e^{x}$
b) $y=e^{2 x+1}$

Chain Rule:

If $h(x)=f(g(x))$
$h^{\prime}(x)=f^{\prime}[g(x)] \times g^{\prime}(x)$
Apply to exponential functions:
If $h(x)=b^{g(x)}$
$h^{\prime}(x)=b^{g(x)} \times \ln b \times g^{\prime}(x)$
c) $y=e^{x}-e^{-x}$
d) $y=2 e^{x} \cos x$
e) $y=x^{2} 10^{x}$

Example 2: Identify the local extrema of the function $f(x)=x^{2} e^{x}$.

Example 3: The effectiveness of studying for an exam depends on how many hours a student studies. Some experiments show that if the effectiveness, E, is put on a scale of 0 to 10 , then $E(t)=0.5\left[10+t e^{-\frac{t}{20}}\right]$, where t is the number of hours spent studying for an examination. If a student has up to 30 hours for studying, how many hours are needed for maximum effectiveness.

