Part 1: Try and Solve a Logarithmic Equation

Solve the equation $\log (x+5)=2 \log (x-1)$
Hint: apply the power law of logarithms to the right side of the equation
$\log (x+5)=\log (x-1)^{2}$
$x+5=(x-1)^{2}$
$x+5=x^{2}-2 x+1$

Note:

If $\log _{m} a=\log _{m} b$, then $a=b$.
$0=x^{2}-3 x-4$
$0=(x-4)(x+1)$
$x=4$ or $x=-1$

Reject $x=-1$ because $\log (x-1)$ is undefined for this value of x.

Therefore, the only solution is $x=4$

Part 1: Solve Simple Logarithmic Equations

Example 2: Solve each of the following equations
a) $\log (x+4)=1$

Method 1: re-write in exponential form

$$
x+4=10^{1}
$$

Method 2: express both sides as a logarithm of the same base

$$
x+4=10
$$

$$
x=6
$$

$$
\begin{aligned}
& \log (x+4)=\log (10) \\
& x+4=10 \\
& x=6
\end{aligned}
$$

b) $\log _{5}(2 x-3)=2$
$5^{2}=2 x-3$
$25=2 x-3$
$28=2 x$
$14=x$

Part 2: Apply Factoring Strategies to Solve Equations

Example 3: Solve each equation and reject any extraneous roots
a) $\log (x-1)-1=-\log (x+2)$
$\log (x-1)+\log (x+2)=1$
$\log [(x-1)(x+2)]=1$
$\log \left(x^{2}+x-2\right)=1$
$x^{2}+x-2=10^{1}$
$x^{2}+x-12=0$
$(x+4)(x-3)=0$
$x=-4$ or $x=3$
Reject $x=-4$ because both of the original expressions are undefined for this value.

The only solution is $x=3$
b) $\log \sqrt[3]{x^{2}+48 x}=\frac{2}{3}$
c) $\log _{3} x-\log _{3}(x-4)=2$
$\log \left(x^{2}+48 x\right)^{\frac{1}{3}}=\frac{2}{3}$
$\log _{3}\left(\frac{x}{x-4}\right)=2$
$\frac{1}{3} \log \left(x^{2}+48 x\right)=\frac{2}{3}$
$\frac{x}{x-4}=3^{2}$
$3\left[\frac{1}{3} \log \left(x^{2}+48 x\right)\right]=3\left(\frac{2}{3}\right)$

$$
\frac{x}{x-4}=9
$$

$$
x=9(x-4)
$$

$$
\log \left(x^{2}+48 x\right)=2
$$

$$
x^{2}+48 x=10^{2} \quad x=9 x-36
$$

$$
x^{2}+48 x-100=0
$$

$$
36=8 x
$$

$(x+50)(x-2)=0$

$$
\frac{9}{2}=x
$$

$x=-50$ or $x=2$

Both are valid solutions because they both make the argument of the logarithm positive.

Example 4: If $\log _{a} b=3$, then use \log rules to find the value of...
a) $\log _{a} a b^{2}$
$=\log _{a} a+\log _{a} b^{2}$
$=\log _{a} a+2 \log _{a} b$
$=1+2(3)$
$=7$
b) $\log _{b} a$
$=\frac{\log _{a} a}{\log _{a} b}$
$=\frac{1}{3}$

Hint: need to change the base

$$
\log _{b} m=\frac{\log m}{\log b}
$$

