Part 1: Try and Solve a Logarithmic Equation

Solve the equation log(x + 5) = 2 log(x - 1)

Hint: apply the power law of logarithms to the right side of the equation

 $log(x + 5) = log(x - 1)^{2}$ $x + 5 = (x - 1)^{2}$ $x + 5 = x^{2} - 2x + 1$ $0 = x^{2} - 3x - 4$ 0 = (x - 4)(x + 1) x = 4 or x = -1

Reject x = -1 because log(x - 1) is undefined for this value of x.

Therefore, the only solution is x = 4

Part 1: Solve Simple Logarithmic Equations

Example 2: Solve each of the following equations

a) $\log(x + 4) = 1$

Method 1: re-write in exponential form

 $x + 4 = 10^1$

x + 4 = 10

x = 6

Note:

If $\log_m a = \log_m b$, then a = b.

To complete this lesson, you will need to remember how to change from logarithmic to exponential:

 $y = \log_b x \rightarrow x = b^y$

Method 2: express both sides as a logarithm of the same base

log(x + 4) = log(10)x + 4 = 10

x = 6

b) $\log_5(2x - 3) = 2$ $5^2 = 2x - 3$ 25 = 2x - 3 28 = 2x14 = x

Part 2: Apply Factoring Strategies to Solve Equations

Example 3: Solve each equation and reject any extraneous roots

a) $\log(x - 1) - 1 = -\log(x + 2)$ $\log(x - 1) + \log(x + 2) = 1$ $\log[(x - 1)(x + 2)] = 1$ $\log(x^2 + x - 2) = 1$ $x^2 + x - 2 = 10^1$ $x^2 + x - 12 = 0$ (x + 4)(x - 3) = 0x = -4 or x = 3

Reject x = -4 because both of the original expressions are undefined for this value.

The only solution is x = 3

b)
$$\log \sqrt[3]{x^2 + 48x} = \frac{2}{3}$$

c) $\log_3 x - \log_3 (x - 4) = 2$
 $\log(x^2 + 48x)^{\frac{1}{3}} = \frac{2}{3}$
 $\frac{1}{3}\log(x^2 + 48x) = \frac{2}{3}$
 $3\left[\frac{1}{3}\log(x^2 + 48x)\right] = 3\left(\frac{2}{3}\right)$
 $\log(x^2 + 48x) = 2$
 $x^2 + 48x = 10^2$
 $x^2 + 48x - 100 = 0$
 $(x + 50)(x - 2) = 0$
 $x = -50 \text{ or } x = 2$
c) $\log_3 x - \log_3 (x - 4) = 2$
 $\frac{x}{x - 4} = 9$
 $x = 9(x - 4)$
 $x = 9x - 36$
 $36 = 8x$
 $(x + 50)(x - 2) = 0$
 $\frac{9}{2} = x$

Both are valid solutions because they both make the argument of the logarithm positive.

Example 4: If $\log_a b = 3$, then use log rules to find the value of...

a) $\log_a ab^2$ = $\log_a a + \log_a b^2$ = $\log_a a + 2\log_a b$ = 1 + 2(3)= 7

b) $\log_b a$

 $= \frac{\log_a a}{\log_a b}$

 $=\frac{1}{3}$

Hint: need to change the base $\log_b m = \frac{\log m}{\log b}$