L5 – Cross Product of Vectors	s
MCV4U	
Jensen	

The cross product of two vectors \vec{a} and \vec{b} in R^3 is the vector that is **perpendicular** to these vectors such that the vectors \vec{a} , \vec{b} , and $\vec{a} \times \vec{b}$ form a right-handed system.

Right handed system tells you to point your hand along vector \vec{a} and curl your fingers towards vector \vec{b} . Your thumb will be pointing in the direction of $\vec{a} \times \vec{b}$. Notice that $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$ point in opposite directions.

Sometimes the direction of the cross product is defined by either 'in to the page' or 'out of the page':

$\vec{a} \times \vec{b}$	$\vec{b} imes \vec{a}$
"Out of the page"	"In to the page"

3D visualization:

https://www.geogebra.org/3d/jyqcr3bf

Unit 5

Properties of Cross Product:

- $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$
- $\vec{u} \times (\vec{v} + \vec{w}) = \vec{u} \times \vec{v} + \vec{u} \times \vec{w}$
- $(\vec{u} + \vec{v}) \times \vec{w} = \vec{u} \times \vec{w} + \vec{v} \times \vec{w}$
- If $\vec{u} \times \vec{v} = 0$, and \vec{u} and \vec{v} are non-zero, then \vec{u} and \vec{v} are collinear.
- $k(\vec{u} \times \vec{v}) = (k\vec{u}) \times \vec{v} = \vec{u} \times (k\vec{v})$
- $|\vec{u} \times \vec{v}| =$ the area of the parallelogram defined by \vec{u} and \vec{v}

Part 2: Cross Product of Geometric Vectors

Formula: $\vec{a} \times \vec{b} = (|\vec{a}||\vec{b}|\sin\theta)\hat{n}$

 $\boldsymbol{\theta}$ is the angle between the vectors

 \hat{n} is a unit vector perpendicular to both $ec{a}$ and $ec{b}$

Example 1: If $|\vec{u}| = 30$, $|\vec{v}| = 20$, the angle between \vec{u} and \vec{v} is 40°, and \vec{u} and \vec{v} are in the plane of the page, find...

a) $\vec{u} \times \vec{v}$

 $\vec{u} \times \vec{v} = (|\vec{u}||\vec{v}|\sin\theta)\hat{n}$ $\vec{u} \times \vec{v} = [(30)(20)\sin 40]\hat{n}$ $\vec{u} \times \vec{v} \cong 385.7\hat{n}$ $\vec{u} \times \vec{v} \cong 385.7 \text{ out of the page}$

b) $\vec{v} \times \vec{u}$

 $\vec{v} \times \vec{u} = (|\vec{v}||\vec{u}|\sin\theta)\hat{n}$ $\vec{v} \times \vec{u} = [(20)(30)\sin 40](-\hat{n})$ $\vec{v} \times \vec{u} \cong -385.7\hat{n}$ $\vec{v} \times \vec{u} \cong 385.7$ in to the page

 \vec{u}

Part 3: Cross Product of Algebraic Vectors

Formula:

If
$$\vec{a} = [a_1, a_2, a_3]$$
 and $\vec{b} = [b_1, b_2, b_3]$
 $\vec{a} \times \vec{b} = [a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1]$
 $= (a_2b_3 - a_3b_2)\vec{i} + (a_3b_1 - a_1b_3)\vec{j} + (a_1b_2 - a_2b_1)\vec{k}$

How to set it up:

Example 2: If $\vec{p} = [-1,3,2]$ and $\vec{q} = [2,-5,6]$, calculate each of the following:

a) $\vec{p} imes \vec{q}$

$$\vec{p} \times \vec{q} = [3(6) - 2(-5), 2(2) - (-1)(6), (-1)(-5) - (3)(2)]$$

$$\vec{p} \times \vec{q} = [28, 10, -1]$$

$$\vec{p} \times \vec{q} = [28, 10, -1]$$

b) $\vec{q} \times \vec{p}$

Example 3a: Determine the area of the parallelogram defined by the vectors $\vec{u} = [4,5,2]$ and $\vec{v} = [3,2,7]$.

Example 3b: Determine the angle between the vectors \vec{u} and \vec{v} .

 $|\vec{u} \times \vec{v}| = |\vec{u}| |\vec{v}| \sin \theta$ $\sin \theta = \frac{|\vec{u} \times \vec{v}|}{|\vec{u}| |\vec{v}|}$ $\sin \theta = \frac{\sqrt{1494}}{(\sqrt{4^2 + 5^2 + 2^2})(\sqrt{3^2 + 2^2 + 7^2})}$ $\sin \theta = \frac{\sqrt{1494}}{(\sqrt{45})(\sqrt{62})}$ $\theta \approx 47^\circ \qquad \text{OR} \qquad \theta \approx 180 - 47 = 133^\circ$

From an inspection of the vectors we can tell that $\theta \cong 47^{\circ}$.

