 	L6 – Implicit Differentiation and Derivatives of Log Functions	Unit 3
i I	MCV4U	1
1	Jensen	1
L		'

_ _ _ _ _ _ _ _

Part 1: Chain Rule Using Leibniz Notation

If y is a function of u and u is a function of x, then $\frac{dy}{dx} = \frac{dy}{du}\frac{du}{dx}$.

Example 1: Suppose we wish to differentiate $y = (5 + 2x)^{10}$ in order to calculate $\frac{dy}{dx}$. We make a substitution and let u = 5 + 2x so that $y = u^{10}$

Part 2: Implicit Differentiation

Up until now, most functions were written in the form in which y was defined explicitly as a function of x, such as $y = x^3 - 4x$. In that equation, y is isolated and is expressed ESPLICITLY as a function of x.

Functions can also be defined implicitly by relations, such as a circle $x^2 + y^2 = 16$. In this case, y is not isolated or explicitly defined in terms of x. You could rearrange to isolate for y but often this is very difficult or impossible. It will be necessary to use the chain rule to implicitly differentiate when it is in implicit form.

$$\frac{d}{dx}f(y) = \frac{d}{dy}f(y) \times \frac{dy}{dx}$$

Example 2: Differentiate each of the following using implicit differentiation

a)
$$x^2 + y^2 = 16$$

b) $y^2 + x^3 - y^3 + 6 = 3y$

Part 3: Derivative of Logarithms

Proof of the derivative of $y = \log_a x$

Start by writing in inverse form:

Now use implicit differentiation to differentiate with respect to *x*

Rule:

$$\frac{d}{dx}\log_a x = \frac{1}{x\ln a}$$

If you need chain rule:

$$\frac{d}{dx}\log_a[f(x)] = \frac{1}{f(x)\ln a}f'(x) = \frac{f'(x)}{f(x)\ln a}$$

Example 3: Differentiate each of the following with respect to *x*.

a) $y = 2\ln(1 + x^2)$ b) $f(x) = 1 - \log_4(2x - 1)$