```
L6 - Optimization Problems
MCV4U
; Jensen
```


Tips for Optimization Problems:

- Diagrams can be helpful
- Identify the independent variable and express all other variables in terms of it
- Define a function in terms of the independent variable
- Identify any restriction on the variable
- Solve for $f^{\prime}(x)=0$ to identify critical points
- Check critical points and endpoints

Components of a Calculus Problem

Optimization Warm Up:

A lifeguard has 200 meters of rope and some buoys with which she intends to enclose a rectangular area at a lake for swimming. The beach will form one side of the rectangle, with the rope forming the other 3 sides. Find the dimensions that will produce the maximum enclosed area.

Example 1: A cardboard box with a square base is to have a volume of 8 Liters ($1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$) Find the dimensions that will minimize the amount of cardboard to be used. What is the minimum surface area?

Example 2: A soup can of volume $500 \mathrm{~cm}^{3}$ is to be constructed. The material for the top costs $0.4 \mathrm{C} / \mathrm{cm}^{2}$ while the material for the bottom and sides costs $0.2 \mathrm{C} / \mathrm{cm}^{2}$. Find the dimensions that will minimize the cost of producing the can. What is the min cost?

Example 3: Ian and Ada are both training for a marathon. lan's house is located 20 km north of Ada's house. At 9:00 am one Saturday, lan leaves his house and jogs south at $8 \mathrm{~km} / \mathrm{h}$. At the same time, Ada leaves her house and jogs east at $6 \mathrm{~km} / \mathrm{h}$. When are lan and Ada closest together, given that they both run for 2.5 hours?

