```
L6 - Applications of Rates of Change
MCV4U
\ Jensen
```

Unit 1

Part 1: Rates of Change Applications

Example 1: Suppose the function $V(t)=\frac{50000+6 t}{1+0.4 t}$ represents the value, V, in dollars, of a new car t years after it is purchased.
a) What is the rate of change of the value of the car at 2 years? 5 years? And 7 years?
b) What was the initial value of the car?

Example 2: Kinetic energy, K, is the energy due to motion. When an object is moving, its kinetic energy is determined by the formula $K(v)=0.5 m v^{2}$, where K is in joules, m is the mass of the object, in kilograms; and v is the velocity of the object, in meters per second.

Suppose a ball with a mass of 0.35 kg is thrown vertically upward with an initial velocity of $40 \mathrm{~m} / \mathrm{s}$. Its velocity function is $v(t)=40-9.8 t$, where t is time, in seconds.
a) Express the kinetic energy of the ball as a function of time.
b) Determine the rate of change of the kinetic energy of the ball at 3 seconds.

Linear Density:

The linear density of an object refers to the mass of an object per unit length. Suppose the function $f(x)$ gives the mass, in kg, of the first x meters of an object. For the part of the object that lies between x_{1} and x_{2}, the average linear density $=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$. The corresponding derivative function $f^{\prime}(x)$ is the linear density, the rate of change of mass at a particular length x.

Example 3: The mass, in kg , of the first x meters of wire can be modelled by the function $f(x)=\sqrt{3 x+1}$.
a) Determine the average linear density of the part of the wire from $x=5$ to $x=8$.
b) Determine the linear density at $x=5$ and $x=8$. What do these results tell you about the wire.

Terminology:

- The demand functions, or price function, is $p(x)$, where x is the number of units of a product or service that can be sold at a particular price, p.
- The revenue function is $R(x)=x \cdot p(x)$, where x is the number of units of a product or service sold at a price per unit of $p(x)$.
- The cost function, $C(x)$, is the total cost of producing x units of a product or service.
- The profit function, $P(x)$, is the profit from the sale of x units of a product or service. The profit function is the difference between the revenue function and the cost function: $P(x)=R(x)-C(x)$

Economists use the word marginal to indicate the derivative of a business function.

- $C^{\prime}(x)$ is the marginal cost function and refers to the instantaneous rate of change of total cost with respect to the number of items produced.
- $R^{\prime}(x)$ is the marginal revenue function and refers to the instantaneous rate of change of total revenue with respect to the number of items sold.
- $P^{\prime}(x)$ is the marginal profit function and refers to the instantaneous rate of change of total profit with respect to the number of items sold.

Example 4: A company sells 1500 movie DVDs per month at $\$ 10$ each. Market research has shown that sales will decrease by 125 DVDs per month for each $\$ 0.25$ increase in price.
a) Determine a demand (or price) function.
b) Determine the marginal revenue when sales are 1000 DVDs per month.
c) The cost of producing x DVDs is $C(x)=-0.004 x^{2}+9.2 x+5000$. Determine the marginal cost when production is 1000 DVDs per month.
d) Determine the actual cost of producing the $1001^{\text {st }}$ DVD.
e) Determine the Profit and Marginal Profit for the monthly sales of 1000 DVDs.

