

Part 1: Investigation

a) What is the period of both of the functions above? How many cycles between 0 and 2π radians?

For $y = \sin x \rightarrow period = 2\pi$

For $y = \sin(2x) \rightarrow period = \frac{2\pi}{2} = \pi$

b) Looking at the graph of $y = \sin x$, how many solutions are there for $\sin x = \frac{1}{\sqrt{2}} \approx 0.71$?

2 solutions

 $\sin\frac{\pi}{4} = \sin\frac{3\pi}{4} = \frac{1}{\sqrt{2}}$

c) Looking at the graph of $y = \sin(2x)$, how many solutions are there for $\sin(2x) = \frac{1}{\sqrt{2}} \approx 0.71$?

4 solutions

$$\sin\left[2\left(\frac{\pi}{8}\right)\right] = \sin\left[2\left(\frac{3\pi}{8}\right)\right] = \sin\left[2\left(\frac{9\pi}{8}\right)\right] = \sin\left[2\left(\frac{11\pi}{8}\right)\right] = \frac{1}{\sqrt{2}}$$

d) When the period of a function is cut in half, what does that do to the number of solutions between 0 and 2π radians?

Doubles the number of solutions

Part 2: Solve Linear Trigonometric Equations that Involve Double Angles

Example 2: $\cos(2\theta) = -\frac{1}{2}$ where $0 \le \theta \le 2\pi$

Remember that $\cos(2\theta)$ has a period of π ; add π to θ_1 and θ_2 to find other solutions $0 \le \theta \le 2\pi$

$\Theta_3 = \Theta_1 + \Re$	$\Theta_4 = \Theta_2 + \Omega$
$\Theta_3 = \frac{1}{2} + 1$	$\Theta_{4} = \frac{21}{3} + 17$
$\theta_3 = \frac{4\pi}{2}$	$\Theta_{4} = \frac{51}{3}$

 $\cos\left[2\left(\frac{4}{3}\right)\right] = \cos\left[2\left(\frac{2\pi}{3}\right)\right] = \cos\left[2\left(\frac{4\pi}{3}\right)\right] = \cos\left[2\left(\frac{5\pi}{3}\right)\right] = -\frac{1}{2}$

Remember that $\tan(2\theta)$ has a period of $\frac{T}{2}$; add $\frac{T}{2}$ to θ_1 and θ_2 to Find other solutions $0 \le \theta \le 2T$

$\Theta_{4} = \Theta_{3} + \frac{\pi}{2}$
$=\frac{917}{8}+\frac{47}{8}$
= 13th

 $\tan\left[2\left(\frac{\pi}{g}\right)\right] + \tan\left[2\left(\frac{5\pi}{g}\right)\right] + \tan\left[2\left(\frac{9\pi}{g}\right)\right] + \tan\left[2\left(\frac{13\pi}{g}\right)\right] = 1$