```
L6 - 5.4 Solve Double Angle Trigonometric Equations
MHF4U
Jensen
```


## Part 1: Investigation

$$
y=\sin x
$$

$$
y=\sin (2 x)
$$



a) What is the period of both of the functions above? How many cycles between 0 and $2 \pi$ radians?

For $y=\sin x \rightarrow$ period $=2 \pi$
For $y=\sin (2 x) \rightarrow$ period $=\frac{2 \pi}{2}=\pi$
b) Looking at the graph of $y=\sin x$, how many solutions are there for $\sin x=\frac{1}{\sqrt{2}} \approx 0.71$ ?

2 solutions
$\sin \frac{\pi}{4}=\sin \frac{3 \pi}{4}=\frac{1}{\sqrt{2}}$
c) Looking at the graph of $y=\sin (2 x)$, how many solutions are there for $\sin (2 x)=\frac{1}{\sqrt{2}} \approx 0.71$ ?

## 4 solutions

$\sin \left[2\left(\frac{\pi}{8}\right)\right]=\sin \left[2\left(\frac{3 \pi}{8}\right)\right]=\sin \left[2\left(\frac{9 \pi}{8}\right)\right]=\sin \left[2\left(\frac{11 \pi}{8}\right)\right]=\frac{1}{\sqrt{2}}$
d) When the period of a function is cut in half, what does that do to the number of solutions between 0 and $2 \pi$ radians?

Doubles the number of solutions

Example 1: $\sin (2 \theta)=\frac{\sqrt{3}}{2}$ where $0 \leq \theta \leq 2 \pi$

Let $2 \theta=x$

$$
\sin x=\frac{\sqrt{3}}{2}
$$



$$
\sin \pi / 3=\frac{\sqrt{3}}{2}
$$

Put reference angle in $Q 1+Q 2$ who sine is $\Theta$



$$
\begin{aligned}
x_{1} & =\pi / 3 \\
x_{2} & =\pi-\pi / 3 \\
x_{2} & =2 \pi / 3 \\
2 \theta & =x \\
1 & \searrow \\
2 \theta=\pi / 3 \quad 2 \theta & =2 \pi / 3 \\
\theta_{1}=\pi / 6 \quad \theta_{2} & =2 \pi / 6 \\
\quad \theta_{2} & =\pi / 3
\end{aligned}
$$

$y=\sin (2 \theta)$ has a period of $\pi$; add $\pi$ to $\theta_{1}$ and $\theta_{2}$ to find other angles $0 \leqslant \theta \leqslant 2 \pi$ Hat have equivalent ratios

$$
\begin{array}{rlr}
\theta_{3}=\theta_{1}+\pi & \theta_{4}=\theta_{2}+\pi \\
=\pi / 6+\pi & \theta_{4}=\pi / 3+\pi \\
=\frac{7 \pi}{6} & \theta_{4}=\frac{4 \pi}{3} \\
\sin \left[2\left(\frac{\pi}{6}\right)\right]=\sin \left[2\left(\frac{\pi}{3}\right)\right]=\sin \left[2\left(\frac{7 \pi}{6}\right)\right]=\sin \left[2\left(\frac{4 \pi}{3}\right)\right]=\frac{\sqrt{3}}{2}
\end{array}
$$

Example 2: $\cos (2 \theta)=-\frac{1}{2}$ where $0 \leq \theta \leq 2 \pi$
Let $20=x$

$$
\cos \pi / 3=\frac{1}{2}
$$

Put reference angle in QL + Q3 where cosine is $\Theta$



$$
\begin{aligned}
& 2 \theta=x \\
& 2 \theta=\frac{2 \pi}{3} \theta_{2 \theta}=\frac{4 \pi}{3} \\
& \theta_{1}=\frac{2 \pi}{6} \theta_{2}=\frac{4 \pi}{6} \\
& \theta_{1}=\frac{\pi}{3} \theta_{2}=\frac{2 \pi}{3}
\end{aligned}
$$

Remember that $\cos (2 \theta)$ has a period of $\pi$; add $\pi$ to $\theta_{1}$ and $\theta_{2}$ to find other solutions $0 \leq \theta \leq 2 \pi$

$$
\begin{aligned}
& \theta_{3}=\theta_{1}+\pi \\
& \theta_{3}=\frac{\pi}{3}+\pi \\
& \theta_{3}=\frac{4 \pi}{3}
\end{aligned}
$$

$$
\theta_{4}=\theta_{2}+\pi
$$

$$
\theta_{4}=\frac{2 \pi}{3}+\pi
$$

$$
\theta_{4}=\frac{5 \pi}{3}
$$

$$
\cos \left[2\left(\frac{\pi}{3}\right)\right]=\cos \left[2\left(\frac{2 \pi}{3}\right)\right]=\cos \left[2\left(\frac{4 \pi}{3}\right)\right]=\cos \left[2\left(\frac{5 \pi}{3}\right)\right]=-\frac{1}{2}
$$

Example 3: $\tan (2 \theta)=1$ where $0 \leq \theta \leq 2 \pi$



$$
\begin{aligned}
& x_{1}=\frac{\pi}{4} \\
& x_{2}=\pi+\frac{\pi}{4} \\
& x_{2}=\frac{5 \pi}{4}
\end{aligned}
$$

$$
\begin{array}{ll}
2 \theta=x \\
2 \theta=\frac{\pi}{4} & v_{2}=\frac{5 \pi}{4} \\
\theta_{1}=\frac{\pi}{8} & \theta_{2}=\frac{5 \pi}{8}
\end{array}
$$

Remember that $\tan (2 \theta)$ has a period of $\frac{\pi}{2}$; add $\frac{\pi}{2}$ to $\theta_{1}$ and $\theta_{2}$ to find other solutions $0 \leq \theta \leq 2 \pi$

$$
\begin{array}{rlrl}
\theta_{3} & =\theta_{2}+\frac{\pi}{2} & \theta_{4} & =\theta_{3}+\frac{\pi}{2} \\
& =\frac{5 \pi}{8}+\frac{4 \pi}{8} & & =\frac{9 \pi}{8}+\frac{4 \pi}{8} \\
& =\frac{9 \pi}{8} & & =\frac{13 \pi}{8} \\
\tan \left[2\left(\frac{\pi}{8}\right)\right]+\tan \left[2\left(\frac{5 \pi}{8}\right)\right]+\tan \left[2\left(\frac{9 \pi}{8}\right)\right]+\tan \left[2\left(\frac{13 \pi}{8}\right)\right]=1
\end{array}
$$

