Part 1: Chain Rule Using Leibniz Notation

If y is a function of u and u is a function of x, then $\frac{d y}{d x}=\frac{d y}{d u} \frac{d u}{d x}$.
Example 1: Suppose we wish to differentiate $y=(5+2 x)^{10}$ in order to calculate $\frac{d y}{d x}$. We make a substitution and let $u=5+2 x$ so that $y=u^{10}$

The chain rule states:
$\frac{d y}{d x}=\frac{d y}{d u} \times \frac{d u}{d x}$
If $y=u^{10} \quad$ then $\quad \frac{d y}{d u}=10 u^{9}$
If $u=5+2 x \quad$ then $\quad \frac{d u}{d x}=2$
Therefore:
$\frac{d y}{d x}=10 u^{9} \times 2$
$\frac{d y}{d x}=20 u^{9}$
$\frac{d y}{d x}=20(5+2 x)^{9}$

Part 2: Implicit Differentiation

Up until now, most functions were written in the form in which y was defined explicitly as a function of x, such as $y=x^{3}-4 x$. In that equation, y is isolated and is expressed EXPLICITLY as a function of x.

Functions can also be defined implicitly by relations, such as a circle $x^{2}+y^{2}=16$. In this case, y is not isolated or explicitly defined in terms of x. You could rearrange to isolate for y but often this is very difficult or impossible. It will be necessary to use the chain rule to implicitly differentiate when it is in implicit form.

$$
\frac{d}{d x} f(y)=\frac{d}{d y} f(y) \times \frac{d y}{d x}
$$

Example 2: Differentiate each of the following using implicit differentiation
a) $x^{2}+y^{2}=16$
b) $y^{2}+x^{3}-y^{3}+6=3 y$

$$
\begin{aligned}
& \frac{d}{d x} x^{2}+\frac{d}{d y} y^{2} \times \frac{d y}{d x}=\frac{d}{d x} 16 \\
& 2 x+2 y \times \frac{d y}{d x}=0 \\
& 2 y \times \frac{d y}{d x}=-2 x \\
& \frac{d y}{d x}=\frac{-2 x}{2 y}
\end{aligned}
$$

$$
\begin{aligned}
& 2 y\left(y^{\prime}\right)+3 x^{2}-3 y^{2}\left(y^{\prime}\right)=3\left(y^{\prime}\right) \\
& 2 y\left(y^{\prime}\right)-3 y^{2}\left(y^{\prime}\right)-3\left(y^{\prime}\right)=-3 x^{2} \\
& y^{\prime}\left(2 y-3 y^{2}-3\right)=-3 x^{2} \\
& y^{\prime}=\frac{-3 x^{2}}{2 y-3 y^{2}-3}
\end{aligned}
$$

Part 3: Derivative of Logarithms

Proof of the derivative of $y=\log _{a} x$
Start by writing in inverse form:

$$
a^{y}=x
$$

Now use implicit differentiation to differentiate with respect to x

$$
\begin{gathered}
\ln a\left(a^{y}\right) y^{\prime}=1 \\
y^{\prime}=\frac{1}{\ln a\left(a^{y}\right)} \\
y^{\prime}=\frac{1}{x \ln a}
\end{gathered}
$$

Rule:

$$
\frac{d}{d x} \log _{a} x=\frac{1}{x \ln a}
$$

If you need chain rule:

$$
\frac{d}{d x} \log _{a}[f(x)]=\frac{1}{f(x) \ln a} f^{\prime}(x)=\frac{f^{\prime}(x)}{f(x) \ln a}
$$

Example 3: Differentiate each of the following with respect to x.
a) $y=2 \ln \left(1+x^{2}\right)$
b) $f(x)=1-\log _{4}(2 x-1)$
$\frac{d y}{d x}=2 \frac{1}{\left(1+x^{2}\right) \ln e}(2 x)$
$\frac{d y}{d x}=\frac{4 x}{1+x^{2}}$

$$
\begin{aligned}
& \frac{d y}{d x}=0-\frac{1}{(2 x-1) \ln 4}(2) \\
& \frac{d y}{d x}=-\frac{2}{(2 x-1) \ln 4}
\end{aligned}
$$

