Tips for Optimization Problems:

- Diagrams can be helpful
- Identify the independent variable and express all other variables in terms of it
- Define a function in terms of the independent variable
- Identify any restriction on the variable
- Solve for $f^{\prime}(x)=0$ to identify critical points
- Check critical points and endpoints

Components of a Calculus Problem

Optimization Warm Up:

A lifeguard has 200 meters of rope and some buoys with which she intends to enclose a rectangular area at a lake for swimming. The beach will form one side of the rectangle, with the rope forming the other 3 sides. Find the dimensions that will produce the maximum enclosed area.
width $=x$
length $=200-2 x$
$A=($ length $)($ width $)$
$A=x(200-2 x)$
$A=200 x-2 x^{2}$
Note: The domain of this function is restricted to values $0<x<100$
because there is only 200 meters of rope to use.
To determine the max area, test endpoints of the interval as well as any critical numbers.
Critical Number(s):
$A^{\prime}(x)=200-4 x$
$0=200-4 x$
$4 x=200$
$x=50$ is a critical number
Tests:
$A(0)=0[200-2(0)]$
$A(0)=0 \mathrm{~m}^{2}$

$$
A(50)=50[200-2(50)]
$$

$$
A(100)=100[200-2(100)]
$$

$$
A(0)=0 \mathrm{~m}^{2}
$$

$$
A(50)=5000 \mathrm{~m}^{2} \quad A(100)=0 \mathrm{~m}^{2}
$$

Therefore, the max area of $5000 \mathrm{~m}^{2}$ occurs when the width is 50 m and the length is 100 m .

Example 1: A cardboard box with a square base is to have a volume of 8 Liters ($1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$) Find the dimensions that will minimize the amount of cardboard to be used. What is the minimum surface area?
$S A=2 x^{2}+4 x h$
Express h in terms of x using the volume equation
$S A=2 x^{2}+4 x\left(\frac{8000}{x^{2}}\right)$
$S A=2 x^{2}+32000 x^{-1}$

From Volume Equation:
$V=($ area of base) (height)
$8000=x^{2} h$
$h=\frac{8000}{x^{2}}$

Find min value by finding zero(s) of the first derivative:

$S A^{\prime}(x)=4 x-32000 x^{-2}$
$0=4 x-32000 x^{-2}$
$32000 x^{-2}=4 x$
$32000=4 x^{3}$
$8000=x^{3}$
$x=20 \mathrm{~cm}$

Verify it is a min using the second derivative test:
$S A^{\prime \prime}(x)=4+64000 x^{-3}$
$S A^{\prime \prime}(20)=4+64000(20)^{-3}$
$S A^{\prime \prime}(20)=12$, therefore $S A$ is concave up at $x=20$, and there is a local min point.

Solve for h when $x=20$:
$h=\frac{8000}{(20)^{2}}$
$h=20$

Find The minimum surface area:
$S A(20)=2(20)^{2}+32000(20)^{-1}$
$S A(20)=2400 \mathrm{~cm}^{3}$

Therefore, a minimum surface area of $2400 \mathrm{~cm}^{3}$ can be obtained when the dimensions of the box are 20 by 20 by 20 cm .

Example 2: A soup can of volume $500 \mathrm{~cm}^{3}$ is to be constructed. The material for the top costs $0.4 \mathrm{C} / \mathrm{cm}^{2}$ while the material for the bottom and sides costs $0.2 \mathrm{C} / \mathrm{cm}^{2}$. Find the dimensions that will minimize the cost of producing the can. What is the min cost?
$S A=2 \pi r^{2}+2 \pi r h$
$S A=\pi r^{2}+\pi r^{2}+2 \pi r h$
$S A(r)=\pi r^{2}+\pi r^{2}+2 \pi r\left(\frac{500}{\pi r^{2}}\right)$

> From Volume Equation:
> $V=\pi r^{2} h$
> $500=\pi r^{2} h$
> $h=\frac{500}{\pi r^{2}}$
$S A(r)=\pi r^{2}+\pi r^{2}+\frac{1000}{r}$
$C(r)=0.4\left(\pi r^{2}\right)+0.2\left(\pi r^{2}\right)+0.2\left(\frac{1000}{r}\right)$
$C(r)=0.6 \pi r^{2}+\frac{200}{r}$
$C^{\prime}(r)=1.2 \pi r-\frac{200}{r^{2}}$
$0=1.2 \pi r-\frac{200}{r^{2}}$
$\frac{200}{r^{2}}=1.2 \pi r$
$\frac{200}{1.2 \pi}=r^{3}$
$r=\sqrt[3]{\frac{200}{1.2 \pi}}$
$r=3.76 \mathrm{~cm}$
$2^{\text {nd }}$ Derivative Test
$C^{\prime \prime}(r)=1.2 \pi+\frac{400}{r^{3}}$
$C^{\prime \prime}(3.76)=11.29$; therefore at the point $(3.76, C(3.76)), C(r)$ is concave up and the point is a MIN point.
$C(3.76)=79.84$ cents
A min cost of 79.84 cents can be obtained by using dimensions $r=3.76 \mathrm{~cm}$ and $h=\frac{500}{\pi(3.76)^{2}}=11.26 \mathrm{~cm}$

Example 3: Ian and Ada are both training for a marathon. Ian's house is located 20 km north of Ada's house. At 9:00 am one Saturday, lan leaves his house and jogs south at $8 \mathrm{~km} / \mathrm{h}$. At the same time, Ada leaves her house and jogs east at $6 \mathrm{~km} / \mathrm{h}$. When are lan and Ada closest together, given that they both run for 2.5 hours?
$s^{2}=J A^{2}+A B^{2}$
$s=\sqrt{J A^{2}+A B^{2}}$
Express s in terms of time (t)
$J A=20-8 t$
$A B=6 t$
$s=\sqrt{(20-8 t)^{2}+(6 t)^{2}}$
$s=\left[400-320 t+64 t^{2}+36 t^{2}\right]^{\frac{1}{2}}$

$s=\left(100 t^{2}-320 t+400\right)^{\frac{1}{2}}$
Find Critical Number(s):
$s^{\prime}(t)=\frac{1}{2}\left(100 t^{2}-320 t+400\right)^{-\frac{1}{2}}(200 t-320)$
$s^{\prime}(t)=\frac{200 t-320}{2 \sqrt{100 t^{2}-320 t+400}}$
$s^{\prime}(t)=\frac{100 t-160}{\sqrt{100 t^{2}-320 t+400}}$
$0=\frac{100 t-160}{\sqrt{100 t^{2}-320 t+400}}$
$0=100 t-160$
$160=100 t$
$t=1.6$
Check endpoints of interval and critical number to determine minimum value:
$s(0)=\sqrt{[20-8(0)]^{2}+[6(0)]^{2}}=20$
$s(1.6)=\sqrt{[20-8(1.6)]^{2}+[6(1.6)]^{2}}=12$
$s(2.5)=\sqrt{[20-8(2.5)]^{2}+[6(2.5)]^{2}}=15$

Therefore, the minimum distance between Ada and Ian occurs after 1.6 hours (10:36 am).

