Part 1: Rates of Change Applications

Example 1: Suppose the function $V(t)=\frac{50000+6 t}{1+0.4 t}$ represents the value, V, in dollars, of a new car t years after it is purchased.
a) What is the rate of change of the value of the car at 2 years? 5 years? And 7 years?
$V^{\prime}(t)=\frac{6(1+0.4 t)-0.4(50000+6 t)}{(1+0.4 t)^{2}}$
$V^{\prime}(2)=\frac{-19994}{[1+0.4(2)]^{2}} \cong-6170.99 \$ /$ year
$V^{\prime}(t)=\frac{6+2.4 t-20000-2.4 t}{(1+0.4 t)^{2}}$
$V^{\prime}(5)=\frac{-19994}{[1+0.4(5)]^{2}} \cong-2221.56$ \$/year
$V^{\prime}(t)=\frac{-19994}{(1+0.4 t)^{2}}$
$V^{\prime}(7)=\frac{-19994}{[1+0.4(7)]^{2}} \cong-1384.63 \$ /$ year
b) What was the initial value of the car?
$V(0)=\frac{50000+6(0)}{1+0.4(0)}=\$ 50000$

Example 2: Kinetic energy, K, is the energy due to motion. When an object is moving, its kinetic energy is determined by the formula $K(v)=0.5 m v^{2}$, where K is in joules, m is the mass of the object, in kilograms; and v is the velocity of the object, in meters per second.
Suppose a ball with a mass of 0.35 kg is thrown vertically upward with an initial velocity of $40 \mathrm{~m} / \mathrm{s}$. Its velocity function is $v(t)=40-9.8 t$, where t is time, in seconds.
a) Express the kinetic energy of the ball as a function of time.
$K[v(t)]=K(t)=0.5(0.35)(40-9.8 t)^{2}$
$K(t)=0.175(40-9.8 t)^{2}$
b) Determine the rate of change of the kinetic energy of the ball at 3 seconds.
$K^{\prime}(t)=2(0.175)(40-9.8 t)(-9.8)$
$K^{\prime}(t)=-3.43(40-9.8 t)$
$K^{\prime}(3)=-3.43[40-9.8(3)]$
$K^{\prime}(3)=-36.358$
At 3 seconds, the rate of change of kinetic energy of the ball is decreasing by $36.358 \mathrm{~J} / \mathrm{s}$.

Linear Density:

The linear density of an object refers to the mass of an object per unit length. Suppose the function $f(x)$ gives the mass, in kg, of the first x meters of an object. For the part of the object that lies between x_{1} and x_{2}, the average linear density $=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$. The corresponding derivative function $f^{\prime}(x)$ is the linear density, the rate of change of mass at a particular length x.

Example 3: The mass, in kg , of the first x meters of wire can be modelled by the function $f(x)=\sqrt{3 x+1}$.
a) Determine the average linear density of the part of the wire from $x=5$ to $x=8$.
average linear density $=\frac{f(8)-f(5)}{8-5}=\frac{\sqrt{3(8)+1}-\sqrt{3(5)+1}}{3}=\frac{1}{3}$ or about $0.333 \mathrm{~kg} / \mathrm{m}$.
b) Determine the linear density at $x=5$ and $x=8$. What do these results tell you about the wire.
$f^{\prime}(x)=\frac{1}{2}(3 x+1)^{-\frac{1}{2}}(3)$
$f^{\prime}(x)=\frac{3}{2 \sqrt{3 x+1}}$

$$
\begin{aligned}
& f^{\prime}(5)=\frac{3}{2 \sqrt{3(5)+1}} \\
& f^{\prime}(5)=\frac{3}{8} \text { or } 0.375 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(8)=\frac{3}{2 \sqrt{3(8)+1}} \\
& f^{\prime}(5)=\frac{3}{10} \text { or } 0.3 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

The linear densities are different. Therefore, the material of which the wire is composed is non-homogenous.

Terminology:

- The demand functions, or price function, is $p(x)$, where x is the number of units of a product or service that can be sold at a particular price, p.
- The revenue function is $R(x)=x \cdot p(x)$, where x is the number of units of a product or service sold at a price per unit of $p(x)$.
- The cost function, $C(x)$, is the total cost of producing x units of a product or service.
- The profit function, $P(x)$, is the profit from the sale of x units of a product or service. The profit function is the difference between the revenue function and the cost function: $P(x)=R(x)-C(x)$

Economists use the word marginal to indicate the derivative of a business function.

- $C^{\prime}(x)$ is the marginal cost function and refers to the instantaneous rate of change of total cost with respect to the number of items produced.
- $R^{\prime}(x)$ is the marginal revenue function and refers to the instantaneous rate of change of total revenue with respect to the number of items sold.
- $P^{\prime}(x)$ is the marginal profit function and refers to the instantaneous rate of change of total profit with respect to the number of items sold.

Example 4: A company sells 1500 movie DVDs per month at $\$ 10$ each. Market research has shown that sales will decrease by 125 DVDs per month for each $\$ 0.25$ increase in price.
a) Determine a demand (or price) function.

Let x represent number of DVDs sold per month
Let p be the price of one DVD
Let n be the number of $\$ 0.25$ price increases
Equation 1: $x=1500-125 n$
Equation 2: $p=10+0.25 n$

Re-write price (p) in terms of number of DVDS sold per month (x) :
From Equation 1: $n=\frac{1500-x}{125}$
Sub in to Equation 2: $p=10+0.25\left(\frac{1500-x}{125}\right)=10+0.002(1500-x)=10+3-0.002 x=13-0.002 x$
The demand (price) function is $p(x)=13-0.002 x$. This gives the price for one DVD when x DVDs are sold.
b) Determine the marginal revenue when sales are 1000 DVDs per month.
$R(x)=x \cdot p(x)$
$R(x)=x(13-0.002 x)$
$R(x)=-0.002 x^{2}+13 x$
$R^{\prime}(x)=-0.004 x+13$
$R^{\prime}(1000)=-0.004(1000)+13$
$R^{\prime}(1000)=9$
When sales are 1000 DVDs, the revenue is increasing at a rate of $\$ 9$ per additional DVD sold.
c) The cost of producing x DVDs is $C(x)=-0.004 x^{2}+9.2 x+5000$. Determine the marginal cost when production is 1000 DVDs per month.
$C^{\prime}(x)=-0.008 x+9.2$
$C^{\prime}(1000)=-0.008(1000)+9.2$
$C^{\prime}(1000)=1.2$
When producing 1000 DVDs per month, the cost is increasing by $\$ 1.20$ for each additional DVD produced.
d) Determine the actual cost of producing the $1001^{\text {st }}$ DVD.
$C(1001)-C(1000)=\left[-0.004(1001)^{2}+9.2(1001)+5000\right]-\left[-0.004(1000)^{2}+9.2(1000)+5000\right]$
$C(1001)-C(1000)=10201.196-10200.00$
$C(1001)-C(1000)=1.196$
The actual cost of producing the $1001{ }^{\text {st }}$ DVD is $\$ 1.196$. Notice the similarity between the marginal cost of the $1000^{\text {th }}$ DVD and the actual cost of producing the $1001^{\text {st }}$ DVD. For large values of x, the marginal cost when producing x items is approximately equal to the cost of producing one more item, the $(x+1)$ th item.
e) Determine the Profit and Marginal Profit for the monthly sales of 1000 DVDs.
$P(x)=R(x)-C(x)$
$P(x)=-0.002 x^{2}+13 x-\left(-0.004 x^{2}+9.2 x+5000\right)$
$P(x)=0.002 x^{2}+3.8 x-5000$
$P(1000)=\left[0.002(1000)^{2}+3.8(1000)-5000\right]$
$P(1000)=800$

The profit if 1000 DVDs are sold is $\$ 800$.
$P^{\prime}(x)=0.004 x+3.8$
$P^{\prime}(1000)=0.004(1000)+3.8$
$P^{\prime}(1000)=7.80$
If 1000 DVDs are sold, the profit is increasing at a rate of $\$ 7.80$ per additional DVD sold.

