A quadratic trigonometric equation may have multiple solutions in the interval $0 \leq x \leq 2 \pi$.

You can often factor a quadratic trigonometric equation and then solve the resulting two linear trigonometric equations. In cases where the equation cannot be factored, use the quadratic formula and then solve the resulting linear trigonometric equations.

You may need to use a Pythagorean identity, compound angle formula, or double angle formula to create a quadratic equation that contains only a single trigonometric function whose arguments all match.

Remember that when solving a linear trigonometric equation, consider all 3 tools that can be useful:

1. Special Triangles
2. Graphs of Trig Functions
3. Calculator

Part 1: Solving Quadratic Trigonometric Equations

Example 1: Solve each of the following equations for $0 \leq x \leq 2 \pi$
a) $(\sin x+1)\left(\sin x-\frac{1}{2}\right)=0$

$$
(\sin x+1)\left(\sin x-\frac{1}{2}\right)=0
$$

* set both factors equal to zero and solve*

$$
\sin x+1=0
$$

$$
\sin x=-1 \quad \text { Graph } \quad \text { Yes! }
$$

$$
\text { Solutions are } x=\frac{3 \pi}{2}, \frac{\pi}{6} \text {, or } \frac{5 \pi}{6}
$$

b) $\sin ^{2} x-\sin x=2$

$$
\begin{aligned}
& \sin ^{2} x-\sin x=2 \\
& \sin ^{2} x-\sin x-2=0
\end{aligned}
$$

Let $\sin x=x$

$$
\begin{aligned}
& x^{2}-x-2=0 \quad \begin{array}{l}
\text { pi-2 } \\
\text { si-1 }
\end{array} \text { - and } \\
& (x-2)(x+1)=0 \\
& (\sin x-2)(\sin x+1)=0 \\
& \sin x-2=0 \\
& \sin x+1=0 \\
& \sin x=2 \\
& \sin x=-1 \\
& \text { T Groph }
\end{aligned}
$$

No solutions

$$
x=\frac{3 \pi}{2}
$$

The only solution is $x=\frac{3 \pi}{2}$
c) $2 \sin ^{2} x-3 \sin x+1=0$

$$
2 \sin ^{2} x-3 \sin x+1=0
$$

Let $x=\sin x$

$$
2 x^{2}-3 x+1=0 \quad \begin{aligned}
& p: 2 \\
& s:-3
\end{aligned}
$$

$$
2 x^{2}-2 x-1 x+1=0
$$

$$
\left(2 x^{2}-2 x\right)+(-1 x+1)=0
$$

$$
2 x(x-1)-1(x-1)=0
$$

$$
(x-1)(2 x-1)=0
$$

$$
(\sin x-1)(2 \sin x-1)=0
$$

$$
\sin x-1=0
$$

$$
\sin x=16 \text { Graph }
$$

$$
x_{1}=\frac{\pi}{2}
$$

$$
\begin{aligned}
& 2 \sin x-1=0 \\
& \sin x=1 / 2 \rightarrow \Delta \\
& \sin (\pi / 6)=\frac{1}{2} \\
& \text { Put in } Q 1+Q 2
\end{aligned}
$$

$$
\begin{aligned}
& x_{2}=\frac{\pi}{6} \\
& x_{3}=\pi-\frac{\pi}{6} \\
& x_{3}=\frac{5 \pi}{6}
\end{aligned}
$$

The solutions are $x=\frac{\pi}{2}, \frac{\pi}{6}$, or $\frac{5 \pi}{6}$

Example 2: Solve each of the following equations for $0 \leq x \leq 2 \pi$
a) $2 \sec ^{2} x-3+\tan x=0$

$$
\begin{aligned}
& 2 \sec ^{2} x-3+\tan x=0 \\
& 2\left(\tan ^{2} x+1\right)-3+\tan x=0 \\
& 2 \tan ^{2} x+2-3+\tan x=0 \\
& 2 \tan ^{2} x+\tan x-1=0 \\
& \text { Let } x=\tan x \\
& 2 x^{2}+x-1=0 \begin{array}{l}
p:-2 \\
5: 1
\end{array} \text { 2and-1 } \\
& 2 x^{2}+2 x-1 x-1=0 \\
& 2 x(x+1)-1(x+1)=0 \\
& (x+1)(2 x-1)=0 \\
& (\tan x+1)(2 \tan x-1)=0 \\
& \downarrow \\
& \tan x+1=0 \\
& \tan x=-15^{\Delta} \\
& \underbrace{1 / 4 / 4}_{1} \\
& \text { Put } \frac{\pi}{4} \text { in Q2 }+ \text { Qt } \\
& x_{1}=\pi-\frac{\pi}{4} \\
& x_{1}=\frac{3 \pi}{4} \\
& x_{2}=2 \pi-\frac{\pi}{4} \\
& x_{2}=\frac{7 \pi}{4} \\
& \left\{\begin{array}{r}
\quad \text { tar } \\
x= \\
x \simeq \\
\text { putin } 01+0.4 \\
x_{3}=0.46 \\
x_{4}=\pi+0.46 \\
x_{4}=3.60
\end{array}\right.
\end{aligned}
$$

b) $3 \sin x+3 \cos (2 x)=2$

$$
x_{1}=2 \pi-0.23
$$

$$
x_{1}=6.05
$$

$$
\begin{aligned}
& x_{2}=\pi+0.23 \\
& x_{2}=3.37
\end{aligned}
$$

$$
\begin{aligned}
& x_{4}=\pi-0.82 \\
& x_{4}=2.32
\end{aligned}
$$

The solutionsare $x=0.82,2.32,3.37$, OR 6.05 RADIANS

$$
\begin{aligned}
& 3 \sin x+3 \cos (2 x)=2 \\
& 3 \sin x+3\left(1-2 \sin ^{2} x\right)=2 \\
& 3 \sin x+3-6 \sin ^{2} x-2=0 \\
& -6 \sin ^{2} x+3 \sin x+1=0 \\
& \text { cet } x=\sin x \\
& -6 x^{2}+3 x+1=\sigma \quad \begin{array}{ll}
& \mathrm{P}:-6 \\
& \text { not Factorable } \\
& \text { use Q.F. }
\end{array} \\
& x=\frac{-3 \pm \sqrt{(3)^{2}-4(-6)(1)}}{2(-6)} \\
& x=\frac{-3 \pm \sqrt{33}}{-12} \\
& \checkmark \\
& x \div-0.23 \\
& \sin x=-0.23^{\angle C A C C} \\
& x_{1}=\sin ^{-1}(-0.23) \\
& x_{1}=-0.23
\end{aligned}
$$

