Part 1: Properties of Exponential Functions

General Equation: $y=a(b)^{k(x-d)}+c$ where the base function is $y=b^{x}$
There are 4 possible shapes for an exponential function

1) $a>0$ and $b>1$ (ex. $y=2^{x}$)
2) $a>0$ and $0<b<1$ (ex. $y=\left(\frac{1}{2}\right)^{x}$)
3) $a<0$ and $b>1$ (ex. $y=-1(2)^{x}$)
4) $a<0$ and $0<b<1$ (ex. $y=-1\left(\frac{1}{2}\right)^{x}$)

To graph the base function $y=b^{x}$, Find the following key features:

- Horizontal asymptote
- Starts at $y=0$ and can be shifted by c
- y-intercept
- set $x=0$ and solve
- At least one other point to be sure of shape
- Common to choose $x=1$ and solve for y

You can then use transformational properties of a, k, d, and c to graph a transformed function

Part 2: Transformations of Exponential Functions

Example 1: Sketch the graph of $f(x)=2(3)^{x+4}-5$ and $g(x)=-3^{\frac{1}{2} x}+4$ using transformations

$y=3^{x}$	
\boldsymbol{x}	\boldsymbol{y}
-1	0.33
0	1
1	3
HA	$y=0$

$f(x)=2(3)^{x+4}-5$	
$\boldsymbol{x}-\mathbf{4}$	$\mathbf{2 y - 5}$
-5	-4.33
-4	-3
-3	1
HA	$y=-5$

$g(x)=-3^{\frac{1}{2} x}+4$	
$2 \boldsymbol{x}$	$\mathbf{- 1} y+4$
-2	3.67
0	3
2	1
HA	$y=4$

Part 3: Properties of Logarithmic Functions

General Equation: $y=a \log _{b}[k(x-d)]+c$ where the base function is $y=\log _{b} x$
Remember that $y=\log _{b} x$ is the inverse of the exponential function $y=b^{x}$

There are 4 possible shapes for a logarithmic function

1) $k>0$ and $b>1$ (ex. $y=\log _{2}(x)$)
2) $k>0$ and $0<b<1$ (ex. $y=\log _{0.5}(x)$)
3) $k<0$ and $b>1$ (ex. $y=\log _{2}(-x)$)
4) $k<0$ and $0<b<1$ (ex. $y=\log _{0.5}(-x)$)

To graph the base function $y=\log _{b} x$, Find the following key features:

- Vertical asymptote
- Starts at $x=0$ and can be shifted by d
- x-intercept
- set $y=0$ and solve
- At least one other point to be sure of shape
- Common to choose $y=1$ and solve for x

Part 4: Transformations of Logarithmic Functions

Example 2: Sketch the graph of $f(x)=-4 \log _{3}(x)+2$ and $g(x)=\log _{3}[-(x+2)]-4$ using transformations

$y=\log _{3}(x)$	
\boldsymbol{x}	\boldsymbol{y}
0.33	-1
1	0
3	1
VA	$x=0$

$f(x)=-4 \log _{3}(x)+2$	
\boldsymbol{x}	$\mathbf{- 4 y}+\mathbf{2}$
0.33	6
1	2
3	-2
VA	$x=0$

$g(x)=\log _{3}[-(x+2)]-4$	
$-\boldsymbol{x}-\mathbf{2}$	$\boldsymbol{y}-\mathbf{4}$
-2.33	-5
-3	-4
-5	-3
VA	$x=-2$

