• • • • • • • • • • • • • • • • • • • •	,	 	 	 		
<mark>L8 – The Natural Logarithm</mark>						
MHF4U						
Jensen						

Part 1: What is e'?

Example 1: Suppose you invest \$1 at 100% interest for 1 year at various compounding levels. What is the highest amount of money you can have after 1 year?

Note: the formula used for compound interest of \$1 at 100% interest annually compounded n times during the year is:

$$A = 1\left(1 + \frac{1}{n}\right)^n$$

Compounding Level, <i>n</i>	Amount, A in dollars
Annualy (once a year)	
Semi-annually (2-times)	
Quarterly (4-times)	
Monthly (12-times)	
Daily (365-times)	
Secondly (31 536 000-times)	
Continuously (1 000 000 000-times)	

Properties of *e*:

- $e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n$
- e is an _____ number, similar to π . They are non-terminating and non-repeating.
- $\log_e x$ is known as the _____ and can be written as _____
- Many naturally occurring phenomena can be modelled using base-*e* exponential and logarithmic functions.
- $\log_e e = \ln e = _$

Part 2: Reminder of Log Rules

Power Law of Logarithms	$\log_b x^n = n \log_b x \text{for } b > 0, b \neq 1, x > 0$					
Product Law of Logarithms	$\log_b(mn) = \log_b m + \log_b n$ for $b > 0, b \neq 1, m > 0, n > 0$					
Quotient Law of Logarithms	$\log_b\left(\frac{m}{n}\right) = \log_b m - \log_b n \text{for } b > 0, b \neq 1, m > 0, n > 0$					
Change of Base Formula	$\log_b m = \frac{\log m}{\log b}$, $m > 0, b > 0, b \neq 1$					
Exponential to Logarithmic	$y = b^x \rightarrow x = \log_b y$					
Logarithmic to Exponential	$y = \log_b x \rightarrow x = b^y$					
Other useful tips	$\log_a(a^b) = b \qquad \qquad \log_a a = \log_{10} a \qquad \qquad \log_b b = 1$					

Part 2: Solving Problems Involving e

Example 2: Evaluate each of the following

a) e³

b) ln 10

c) ln *e*

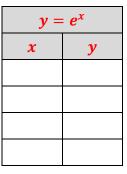
Example 3: Solve each of the following equations

a) $20 = 3e^x$

b) $e^{1-2x} = 55$

Part 3: Graphing Functions Involving e

Example 4: Graph the functions $y = e^x$ and $y = \ln x$



ln x
у

Note: $y = \ln x$ is the inverse of $y = e^x$

