## L8 - The Natural Logarithm

MHF4U
Jensen

## Part 1: What is ' $e^{\prime}$ ?

Example 1: Suppose you invest $\$ 1$ at $100 \%$ interest for 1 year at various compounding levels. What is the highest amount of money you can have after 1 year?

Note: the formula used for compound interest of $\$ 1$ at $100 \%$ interest annually compounded $n$ times during the year is:

$$
A=1\left(1+\frac{1}{n}\right)^{n}
$$

| Compounding Level, $\boldsymbol{n}$ | Amount, $\boldsymbol{A}$ in dollars |
| :---: | :---: |
| Annualy (once a year) | $A=1\left(1+\frac{1}{1}\right)^{1}=2$ |
| Semi-annually (2-times) | $A=1\left(1+\frac{1}{2}\right)^{2}=2.25$ |
| Quarterly (4-times) | $A=1\left(1+\frac{1}{4}\right)^{4}=2.4414$ |
| Monthly (12-times) | $A=1\left(1+\frac{1}{12}\right)^{12}=2.61304$ |
| Daily (365-times) | $A=1\left(1+\frac{1}{365}\right)^{365}=2.71457$ |
| Secondly (31536000-times) | $A=1\left(1+\frac{1}{31536000}\right)^{31536000}=2.718281785$ |
| Continuously (1 000000 000-times) | $A=1\left(1+\frac{1}{1000000000}\right)^{1000000000}=2.718281827$ |

## Properties of $\boldsymbol{e}$ :

- $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \approx 2.718281828459$
- $\quad e$ is an irrational number, similar to $\pi$. They are non-terminating and non-repeating.
- $\log _{e} x$ is known as the natural logarithm and can be written as $\underline{\ln x}$
- Many naturally occurring phenomena can be modelled using base-e exponential and logarithmic functions.
- $\log _{e} e=\ln e=1$


## Part 2: Reminder of Log Rules

| Power Law of Logarithms | $\log _{b} x^{n}=n \log _{b} x$ for $b>0, b \neq 1, x>0$ |
| :---: | :--- |
| Product Law of Logarithms | $\log _{b}(\boldsymbol{m n})=\log _{b} m+\log _{b} n \quad$ for $b>0, b \neq 1, m>0, n>0$ |
| Quotient Law of Logarithms | $\log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n \quad$ for $b>0, b \neq 1, m>0, n>0$ |
| Change of Base Formula | $\log _{b} m=\frac{\log _{m}}{\log b, m>0, b>0, b \neq 1}$ |
| Exponential to Logarithmic | $y=b^{x} \rightarrow x=\log _{b} y$ |
| Logarithmic to Exponential | $y=\log _{b} x \rightarrow x=b^{y} \quad \log a=\log _{10} a \quad \log _{b} b=1$ |
| Other useful tips | $\log _{a}\left(a^{b}\right)=b \quad l$ |

## Part 2: Solving Problems Involving $e$

Example 2: Evaluate each of the following
a) $e^{3} \cong 20.086$
b) $\ln 10 \cong 2.303$
c) $\ln e=1$

Example 3: Solve each of the following equations
a) $20=3 e^{x}$
$20=3 e^{x}$
b) $e^{1-2 x}=55$
$e^{1-2 x}=55$

$$
\frac{20}{3}=e^{x}
$$

$$
\ln \left(\frac{20}{3}\right)=\ln (e)^{x}
$$

$$
\ln \left(\frac{20}{3}\right)=x \cdot \ln (e)
$$

$$
\ln \left(\frac{20}{3}\right)=x(1)
$$

$$
x \doteq 1.897
$$

$$
\begin{aligned}
\ln (e)^{1-2 x} & =\ln (55) \\
(1-2 x)(\ln (e)) & =\ln (55) \\
(1-2 x)(1) & =\ln (55) \\
1-2 x & =\ln (55) \\
1-\ln (55) & =2 x \\
\frac{1-\ln (55)}{2} & =x \\
x & \div-1.504
\end{aligned}
$$

c) $2 \ln (x-3)-7=3$
d) $\ln \left(4 e^{x}\right)=2$

$$
\begin{gathered}
2 \ln (x-3)-7=3 \\
2 \ln (x-3)=10 \\
\ln (x-3)=5 \\
e^{5}=x-3 \\
e^{5}+3=x \\
x=151.413
\end{gathered}
$$

## : Graphing Functions Involving $e$

$$
\ln \left(4 e^{x}\right)=2
$$

$$
e^{2}=4 e^{x}
$$

$$
\frac{e^{2}}{4}=e^{x}
$$

$$
\ln \left(\frac{e^{2}}{4}\right)=\ln \left(e^{x}\right)
$$

$$
\ln \left(\frac{e^{2}}{4}\right)=x \cdot \ln (e)^{i}
$$

## Part 3

Example 4: Graph the functions $y=e^{x}$ and $y=\ln x$

| $y=e^{\boldsymbol{x}}$ |  |
| :---: | :---: |
| $x$ | $\boldsymbol{y}$ |
| -1 | 0.37 |
| 0 | 1 |
| 1 | 2.72 |
| HA | $y=0$ |


| $y=\ln x$ |  |
| :---: | :---: |
| $x$ | $y$ |
| 0.37 | -1 |
| 1 | 0 |
| 2.72 | 1 |
| VA | $x=0$ |

Note: $y=\ln x$ is the inverse of $y=e^{x}$


