Unit 4 Pre-Test Review – Geometric Vectors

MCV4U

Jensen

1) Convert each true bearing to its equivalent quadrant bearing.

a) 159° **b)** 064° **c)** 280° **d)** 202°

2) Use an appropriate scale to draw each vector. Label the magnitude, direction, and scale.

- a) a force of 120 N downward
- **b)** a velocity of 85 km/h at a true bearing of 085° .
- c) a force of 8 N at a quadrant bearing of $N70^{\circ}W$
- 3) Name all the equivalent vectors in the diagram

4) State the opposite of each vector.

- a) 150 km/h on a quadrant bearing of $S50^{\circ}W$
- **b)** \overrightarrow{AB}
- **c)** \vec{v}
- d) 200 N upward

5) The diagram shows a rectangular prism. Name the resulting vector that each sum or difference represents.

a) $\vec{a} + \vec{b}$ b) $\vec{b} + \vec{c}$ c) $\vec{a} - \vec{c}$ d) $\vec{c} - \vec{b}$ e) $\vec{c} - \vec{a}$ f) $\vec{a} - \vec{b}$

6) The diagram shows a regular octagon. Write a single vector that is equivalent to each vector expression.

a) $\overrightarrow{HA} + \overrightarrow{AB}$ b) $\overrightarrow{GH} - \overrightarrow{GF}$ c) $\overrightarrow{FE} + \overrightarrow{BA}$ d) $\overrightarrow{GA} - \overrightarrow{EH} + \overrightarrow{DG}$

7) The diagram shows two squares. Name a single vector equivalent to each expression.

8) Equilateral triangle DEF joins the midpoints of equilateral triangle ABC. Write and expression that is equivalent to each single vector.

a) \overrightarrow{AF} in terms of \overrightarrow{AC} **b)** \overrightarrow{AE} in terms of \overrightarrow{AB} and \overrightarrow{BC} **c)** \overrightarrow{AB} in terms of \overrightarrow{AF} and \overrightarrow{EC}

9) Draw a diagram to represent each vector sum or difference.

10) Use the following set of vectors to draw a diagram of each expression.

a) $\vec{a} + \vec{b} + \vec{c}$ **b)** $\vec{a} + \vec{b} - \vec{c}$ **c)** $\vec{a} - \vec{b} - \vec{c}$

11) ABCD is a parallelogram, and E is the intersection point of the diagonals AC and BD. Name a single vector equivalent to each expression.

12) Let $|\vec{v}| = 500$ km/h, at a quadrant bearing of $S30^{\circ}E$. Draw a scale diagram illustrating each related vector.

a) $2\vec{v}$ b) $0.4\vec{v}$ c) $-3\vec{v}$ d) $-5\vec{v}$

13) In hexagon ABCDEF, opposite sides are parallel and equal, and $\overrightarrow{FC} = 2\overrightarrow{AB}$. Let $\overrightarrow{AB} = \overrightarrow{u}$ and $\overrightarrow{FA} = \overrightarrow{v}$. Express each vector in terms of \overrightarrow{u} and \overrightarrow{v} .

14) The vectors \vec{d} and \vec{e} are such that $|\vec{d}| = 3$ and $|\vec{e}| = 5$, and the angle between them is 30°. Determine each of the following:

a) $\left| \vec{d} + \vec{e} \right|$

b) $\left| \vec{d} - \vec{e} \right|$

c) a unit vector in the direction of $\vec{d} + \vec{e}$

15) Given $|\vec{F}_1| = 85 N$ and $|\vec{F}_2| = 125 N$ and they are acting at an angle of 140° to each other...

a) Find the magnitude of the resultant.

b) Describe the direction of $\vec{F}_1 + \vec{F}_2$ relative to \vec{F}_1

16) A 120 N sign is hanging from two chains attached to a ceiling as shown.

a) Draw the vector diagram that illustrates this situation.b) Determine the magnitude of the tensions in the chains.

17) A sign weighing 98 N is suspended from the middle of a 4 m long chain. The ends of the chain are attached to a ceiling at points 3 m apart. Determine the tensions in the chains.

18) A community center plans to install a new basketball hoop on the side of the building. The hoop and backboard have a combined weight of 196 N and are supported by a brace and a wire. Determine the magnitude of the tensions in the wire and the brace.

19) An airplane is flying at 560 km/h on a heading of 340°. The wind is blowing at 140 km/h from the east.a) Draw a vector diagram of this situation.

b) Determine the ground velocity of the airplane.

20) A sailor wishes to sail to a port that is located S25°E of his present position. The average speed of his sailboat is 23 knots and the wind is blowing from N85°E at 12 knots.

- a) Draw a vector diagram of this situation.
- b) In which direction should the sailor sail?
- c) What will the sailboat's groundspeed be?

21) A canoeist leaves a dock and paddles her canoe at an angle across a river. The current is flowing at 3 km/h. The resulting velocity of the boat is 5.4 km/h downstream, in a direction that forms a 15° angle with the adjacent shore.

- a) Draw a vector diagram of this situation.
- **b)** Determine the canoeist's velocity relative to the water.
- c) How far downstream will she be in 20 min?

22) A cruise ship is being pulled into a dock using two ropes, as shown in the diagram. Find the magnitude of the force in each rope if a resultant force of 50 000 N is needed to pull the cruise ship at the desired speed.

23) A truck weighing 17 000 N is resting on a ramp that is inclined at an angle of 15° to the horizontal. Resolve the weight of the truck into the rectangular components keeping it at rest.

24) A rope attached to a box is being used to drag it up a ramp. A 130 N force is applied to the box at an angle of 35° to the ramp.

a) Find the magnitude of the force in the direction of motion of the box. Round your answer to the nearest tenth of a newton.

b) Find the magnitude of the force perpendicular to the direction of motion of the box. Round your answer to the nearest tenth of a newton.

25) Suppose forces of 45N and 70N act at an angle of 110° to each other. Find the magnitude (to 1 decimal place) and direction (to the nearest degree) of the resultant force. State the direction as an angle off the 70N force.

26) A plane is headed N10^oW with a speed of 600 km/h. An east wind (i.e. wind FROM the east towards the west) causes it to travel at N16^oW. Find the resultant ground speed of the plane, and the speed of the wind, each to 1 decimal place.

27) The force at which a tow truck pulls a car has a horizontal component of 20 000 N and a vertical component of 12 000 N. What is the resultant force on the car?

28) Determine the magnitude of the horizontal and vertical vector components of a 300 N force acting at an angle of 33° to the horizontal.

29) A box with a mass of 275 N rests on a frictionless ramp inclined at an angle of 25° to the level ground. What force must be applied to the box at an angle of 45° to the ramp so that it remains at rest?

ANSWER KEY:

1)a) $S21^{\circ}E$ **b)** $N64^{\circ}E$ **c)** $N80^{\circ}W$ **d)** $S22^{\circ}W$

3) $\overrightarrow{AE} = \overrightarrow{BD}$, $\overrightarrow{EA} = \overrightarrow{DB}$, $\overrightarrow{AF} = \overrightarrow{BC}$, $\overrightarrow{FA} = \overrightarrow{CB}$, $\overrightarrow{FE} = \overrightarrow{CD}$, $\overrightarrow{EF} = \overrightarrow{DC}$, $\overrightarrow{AB} = \overrightarrow{FC} = \overrightarrow{ED}$, $\overrightarrow{BA} = \overrightarrow{CF} = \overrightarrow{DE}$ **4)a)** 150 km/h $N50^{\circ}E$ **b)** $-\overrightarrow{AB} = \overrightarrow{BA}$ **c)** $-\vec{v}$ **d)** 200 N downward

5)a) \overrightarrow{AF} b) \overrightarrow{AC} c) \overrightarrow{DE} d) \overrightarrow{BD} e) \overrightarrow{ED} f) \overrightarrow{BE} 6)a) \overrightarrow{HB} b) \overrightarrow{FH} c) $\overrightarrow{0}$ d) $\overrightarrow{0}$ 7)a) \overrightarrow{EA} b) \overrightarrow{BA} c) \overrightarrow{AC}

```
8)a) 0.5\overrightarrow{AC} b) \overrightarrow{AB} + 0.5\overrightarrow{BC} c) 2\overrightarrow{AF} - 2\overrightarrow{EC}
```

9)a) b) <u>9 N</u>

13)a) $-2\vec{u}$ **b)** $\vec{v} + \vec{u}$ **c)** $2\vec{u} - \vec{v}$ **d)** $-2\vec{u} + \vec{v}$ **e)** $2\vec{v}$ **f)** $-2\vec{v}$

14)a) $\sqrt{34 + 15\sqrt{3}} \approx 7.7$ units **b)** $\sqrt{34 - 15\sqrt{3}} \approx 2.83$ units **c)** $\frac{1}{\sqrt{34 + 15\sqrt{3}}} (\vec{d} + \vec{e})$ **15)a)** 81.1 **b)** $\vec{F}_1 + \vec{F}_2$ makes an angle of 97.6° relative to \vec{F}_1

17) 74.1 N **18)** $\overrightarrow{T_1} = 202.9 \ N \ \overrightarrow{T_2} = 52.5 \ N$ **19)a)**

20)a)

b) 622 km/h at a bearing of 328°

12 knots

23 knots

b) *S*54.4°*E* **c)** 15.9 knots

b) 2.6 km/h at an angle of 32.2° with the adjacent shore **c)** 1.7 km

22) $\overrightarrow{R_1} = 32\ 635.2\ N\ \overrightarrow{R_2} = 22\ 323.8\ N$

23) Force parallel to ramp: 4399.9 N, Normal force: 16 420.7 N

24)a) 106.5 N b) 74.6 N

25) 69.1 N at an angle of 37.8° with the 70 N force.

26) Magnitude of wind = 65.2 km/h, magnitude of ground speed = 614.7 km/h

27) 23 323.8 N at 31° above the horizontal

28) $|\vec{f}_{horizontal}| = 251.6 N$ $|\vec{f}_{vertical}| = 163.39 N$ **29)** 164.36 N