1) Convert each true bearing to its equivalent quadrant bearing.
a) 159°
b) 064°
c) 280°
d) 202°
2) Use an appropriate scale to draw each vector. Label the magnitude, direction, and scale.
a) a force of 120 N downward
b) a velocity of $85 \mathrm{~km} / \mathrm{h}$ at a true bearing of 085°.
c) a force of 8 N at a quadrant bearing of $N 70^{\circ} \mathrm{W}$
3) Name all the equivalent vectors in the diagram

4) State the opposite of each vector.
a) $150 \mathrm{~km} / \mathrm{h}$ on a quadrant bearing of $S 50^{\circ} \mathrm{W}$
b) $\overrightarrow{A B}$
c) \vec{v}
d) 200 N upward
5) The diagram shows a rectangular prism. Name the resulting vector that each sum or difference represents.
a) $\vec{a}+\vec{b}$
b) $\vec{b}+\vec{c}$
c) $\vec{a}-\vec{c}$
d) $\vec{c}-\vec{b}$
e) $\vec{c}-\vec{a}$
f) $\vec{a}-\vec{b}$

6) The diagram shows a regular octagon. Write a single vector that is equivalent to each vector expression.
a) $\overrightarrow{H A}+\overrightarrow{A B}$
b) $\overrightarrow{G H}-\overrightarrow{G F}$
c) $\overrightarrow{F E}+\overrightarrow{B A}$
d) $\overrightarrow{G A}-\overrightarrow{E H}+\overrightarrow{D G}$

7) The diagram shows two squares. Name a single vector equivalent to each expression.
a) $\overrightarrow{F A}-\overrightarrow{F E}$
b) $-\overrightarrow{E B}+\overrightarrow{E F}-\overrightarrow{A F}$
c) $\overrightarrow{A E}+\overrightarrow{E D}-\overrightarrow{C D}$

8) Equilateral triangle DEF joins the midpoints of equilateral triangle $A B C$. Write and expression that is equivalent to each single vector.
a) $\overrightarrow{A F}$ in terms of $\overrightarrow{A C}$
b) $\overrightarrow{A E}$ in terms of $\overrightarrow{A B}$ and $\overrightarrow{B C}$
c) $\overrightarrow{A B}$ in terms of $\overrightarrow{A F}$ and $\overrightarrow{E C}$

9) Draw a diagram to represent each vector sum or difference.
a)

b)

10) Use the following set of vectors to draw a diagram of each expression.
a) $\vec{a}+\vec{b}+\vec{c}$
b) $\vec{a}+\vec{b}-\vec{c}$
c) $\vec{a}-\vec{b}-\vec{c}$

11) $A B C D$ is a parallelogram, and E is the intersection point of the diagonals $A C$ and $B D$. Name a single vector equivalent to each expression.
a) $\overrightarrow{A E}+\overrightarrow{E B}$
b) $\overrightarrow{A E}+\overrightarrow{A E}$
c) $\overrightarrow{B A}+\overrightarrow{A E}+\overrightarrow{E D}+\overrightarrow{D C}$
d) $\overrightarrow{A B}-\overrightarrow{D B}$
e) $\overrightarrow{A B}-\overrightarrow{C B}-\overrightarrow{D C}$

12) Let $|\vec{v}|=500 \mathrm{~km} / \mathrm{h}$, at a quadrant bearing of $S 30^{\circ} \mathrm{E}$. Draw a scale diagram illustrating each related vector.
a) $2 \vec{v}$
b) $0.4 \vec{v}$
c) $-3 \vec{v}$
d) $-5 \vec{v}$
13) In hexagon $A B C D E F$, opposite sides are parallel and equal, and $\overrightarrow{F C}=2 \overrightarrow{A B}$. Let $\overrightarrow{A B}=\vec{u}$ and $\overrightarrow{F A}=\vec{v}$. Express each vector in terms of \vec{u} and \vec{v}.
a) $\overrightarrow{C F}$
b) $\overrightarrow{F B}$
c) $\overrightarrow{F D}$
d) $\overrightarrow{C A}$
e) $\overrightarrow{E B}$
f) $\overrightarrow{B E}$

14) The vectors \vec{d} and \vec{e} are such that $|\vec{d}|=3$ and $|\vec{e}|=5$, and the angle between them is 30°. Determine each of the following:
a) $|\vec{d}+\vec{e}|$
b) $|\vec{d}-\vec{e}|$
c) a unit vector in the direction of $\vec{d}+\vec{e}$
15) Given $\left|\vec{F}_{1}\right|=85 N$ and $\left|\vec{F}_{2}\right|=125 N$ and they are acting at an angle of 140° to each other...
a) Find the magnitude of the resultant.
b) Describe the direction of $\vec{F}_{1}+\vec{F}_{2}$ relative to \vec{F}_{1}
16) A 120 N sign is hanging from two chains attached to a ceiling as shown.
a) Draw the vector diagram that illustrates this situation.
b) Determine the magnitude of the tensions in the chains.

17) A sign weighing 98 N is suspended from the middle of a 4 m long chain. The ends of the chain are attached to a ceiling at points 3 m apart. Determine the tensions in the chains.
18) A community center plans to install a new basketball hoop on the side of the building. The hoop and backboard have a combined weight of 196 N and are supported by a brace and a wire. Determine the magnitude of the tensions in the wire and the brace.

19) An airplane is flying at $560 \mathrm{~km} / \mathrm{h}$ on a heading of 340°. The wind is blowing at $140 \mathrm{~km} / \mathrm{h}$ from the east.
a) Draw a vector diagram of this situation.
b) Determine the ground velocity of the airplane.
20) A sailor wishes to sail to a port that is located $\mathrm{S} 25^{\circ} \mathrm{E}$ of his present position. The average speed of his sailboat is 23 knots and the wind is blowing from $\mathrm{N} 85^{\circ} \mathrm{E}$ at 12 knots.
a) Draw a vector diagram of this situation.
b) In which direction should the sailor sail?
c) What will the sailboat's groundspeed be?
21) A canoeist leaves a dock and paddles her canoe at an angle across a river. The current is flowing at $3 \mathrm{~km} / \mathrm{h}$. The resulting velocity of the boat is $5.4 \mathrm{~km} / \mathrm{h}$ downstream, in a direction that forms a 15° angle with the adjacent shore.
a) Draw a vector diagram of this situation.
b) Determine the canoeist's velocity relative to the water.
c) How far downstream will she be in 20 min ?
22) A cruise ship is being pulled into a dock using two ropes, as shown in the diagram. Find the magnitude of the force in each rope if a resultant force of 50000 N is needed to pull the cruise ship at the desired speed.

23) A truck weighing 17000 N is resting on a ramp that is inclined at an angle of 15° to the horizontal. Resolve the weight of the truck into the rectangular components keeping it at rest.
24) A rope attached to a box is being used to drag it up a ramp. A 130 N force is applied to the box at an angle of 35° to the ramp.
a) Find the magnitude of the force in the direction of motion of the box. Round your answer to the nearest tenth of a newton.
b) Find the magnitude of the force perpendicular to the direction of motion of the box. Round your answer to the nearest tenth of a newton.
25) Suppose forces of 45 N and 70 N act at an angle of 110° to each other. Find the magnitude (to 1 decimal place) and direction (to the nearest degree) of the resultant force. State the direction as an angle off the 70 N force.
26) A plane is headed $N 10^{\circ} \mathrm{W}$ with a speed of $600 \mathrm{~km} / \mathrm{h}$. An east wind (i.e. wind FROM the east towards the west) causes it to travel at $\mathrm{N} 16^{\circ} \mathrm{W}$. Find the resultant ground speed of the plane, and the speed of the wind, each to 1 decimal place.
27) The force at which a tow truck pulls a car has a horizontal component of 20000 N and a vertical component of 12000 N . What is the resultant force on the car?
28) Determine the magnitude of the horizontal and vertical vector components of a 300 N force acting at an angle of 33° to the horizontal.
29) A box with a mass of 275 N rests on a frictionless ramp inclined at an angle of 25° to the level ground. What force must be applied to the box at an angle of 45° to the ramp so that it remains at rest?

ANSWER KEY:

1)a) $S 21^{\circ} E$
b) $N 64^{\circ} E$
c) $N 80^{\circ} \mathrm{W}$
d) $322^{\circ} \mathrm{W}$
2)a)

b)

c)

3) $\overrightarrow{A E}=\overrightarrow{B D}, \overrightarrow{E A}=\overrightarrow{D B}, \overrightarrow{A F}=\overrightarrow{B C}, \overrightarrow{F A}=\overrightarrow{C B}, \overrightarrow{F E}=\overrightarrow{C D}, \overrightarrow{E F}=\overrightarrow{D C}, \overrightarrow{A B}=\overrightarrow{F C}=\overrightarrow{E D}, \overrightarrow{B A}=\overrightarrow{C F}=\overrightarrow{D E}$ 4)a) $150 \mathrm{~km} / \mathrm{h} N 50^{\circ} E \quad$ b) $-\overrightarrow{A B}=\overrightarrow{B A} \quad$ c) $-\vec{v} \quad$ d) 200 N downward
5) a) $\overrightarrow{A F}$
b) $\overrightarrow{A C}$
c) $\overrightarrow{D E}$
d) $\overrightarrow{B D}$
e) $\overrightarrow{E D}$
f) $\overrightarrow{B E}$
6)a) $\overrightarrow{H B}$
b) $\overrightarrow{F H}$
c) $\overrightarrow{0}$ d) $\overrightarrow{0}$
7)a) $\overrightarrow{E A}$
b) $\overrightarrow{B A}$
c) $\overrightarrow{A C}$
8)a) $0.5 \overrightarrow{A C}$
b) $\overrightarrow{A B}+0.5 \overrightarrow{B C}$
c) $2 \overrightarrow{A F}-2 \overrightarrow{E C}$
9)a)

b)

10)a)

b)

11)a) $\overrightarrow{A B}$
b) $\overrightarrow{A C}$ c) $\overrightarrow{B C}$
d) $\overrightarrow{A D}$
e) $\overrightarrow{A D}$

b)

c)

d)

13)a) $-2 \vec{u}$
b) $\vec{v}+\vec{u}$
c) $2 \vec{u}-\vec{v}$
d) $-2 \vec{u}+\vec{v}$
e) $2 \vec{v}$ f) $-2 \vec{v}$
14)a) $\sqrt{34+15 \sqrt{3}} \cong 7.7$ units
b) $\sqrt{34-15 \sqrt{3}} \cong 2.83$ units
c) $\frac{1}{\sqrt{34+15 \sqrt{3}}}(\vec{d}+\vec{e})$
15)a) 81.1 b) $\vec{F}_{1}+\vec{F}_{2}$ makes an angle of 97.6° relative to \vec{F}_{1}
16)a)

b) $\overrightarrow{T_{1}}=105.5 \mathrm{~N} ; \overrightarrow{T_{2}}=41.7 \mathrm{~N}$
17) 74.1 N
18) $\overrightarrow{T_{1}}=202.9 \mathrm{~N} \overrightarrow{T_{2}}=52.5 \mathrm{~N}$
19)a)
b) $622 \mathrm{~km} / \mathrm{h}$ at a bearing of 328°

20)a)

21)a)

b) $2.6 \mathrm{~km} / \mathrm{h}$ at an angle of 32.2° with the adjacent shore c) 1.7 km
22) $\overrightarrow{R_{1}}=32635.2 \mathrm{~N} \overrightarrow{R_{2}}=22323.8 \mathrm{~N}$
23) Force parallel to ramp: 4399.9 N , Normal force: 16420.7 N
24)a) 106.5 N b) 74.6 N
25) 69.1 N at an angle of 37.8° with the 70 N force.
26) Magnitude of wind $=65.2 \mathrm{~km} / \mathrm{h}$, magnitude of ground speed $=614.7 \mathrm{~km} / \mathrm{h}$
27) 23323.8 N at 31° above the horizontal
28) $\left|\vec{f}_{\text {horizontal }}\right|=251.6 \mathrm{~N} \quad\left|\vec{f}_{\text {vertical }}\right|=163.39 \mathrm{~N}$
29) 164.36 N

