Unit 2 Pretest	- Curve Sketching
MCV4U	
lensen	
Sensen	

1) Find the increasing and decreasing intervals for each function.

a)
$$f(x) = 7 + 6x - x^2$$

b) $y = x^3 - 48x + 5$

c) $g(x) = x^4 - 18x^2$

d) $f(x) = x^3 + 10x - 9$

2) Given the graph of f'(x), state the intervals of increase and decrease for the function f(x). Then sketch a possible graph of f(x).

3) Sketch a continuous graph that satisfies the following set of conditions: f'(x) > 0 when x < -4 and x > 3, f'(x) < 0 when -4 < x < 3 and f(1) = 5.

4) Given the following information about y = f(x), sketch a graph for the function on the axes provided below. Label an appropriate scale for the sketch.

Local minimum (6, -3). Local maximum (0,3). Points of inflection at (-2,1) and (8, -1). Increasing when x < 0 and x > 6; decreasing when 0 < x < 3 and 3 < x < 6. Concave up when x < -2 and 3 < x < 8; concave down when -2 < x < 3 and x > 8. HA at y = 0. VA at x = 3. *y*-intercept at (0,3). *x*-intercepts at (2,0) and (4,0).

5) Find the local extrema for each function and classify them as local max or local min.

a) $f(x) = 16 - x^4$ b) $g(x) = x^3 + 9x^2 - 21x - 12$

6) The speed, in km/h, of a certain car t seconds after passing a police radar location is given by the function $v(t) = 3t^2 - 24t + 88$.

a) Find the min speed of the car.

b) The radar tracks the car on the interval 2 < t < 5. Find the max speed of the car on this interval.

7) Determine the absolute extreme values of each function on the given interval.

a) $y = x^2 - 3x + 2; -4 \le x \le 4$ b) $g(x) = 2x^3 - 24x + 3; -4 \le x \le 2$

8) For the function $f(x) = x^4 - 2x^3 - 12x^2 + 3$, determine the points of inflection and the intervals of concavity.

9) For the function $f(x) = 2x^3 - x^4$, determine the critical points and classify them using the second derivative test.

10) Given the graph of f''(x), state the intervals of concavity for f(x).

11) For each function, state equations for any asymptotes.

a)
$$f(x) = \frac{x^2 - 4}{x}$$
 b) $g(x) = \frac{2x - 3}{2x - 4}$

c)
$$y = \frac{x^2 + 1}{x^2 - 3x - 10}$$
 d) $\frac{x - 1}{x^2 + 2x + 1}$

12) State the equation of the tangent to the graph of $f(x) = \frac{x+1}{x^2+1}$ at the point where x = -1.

13) Analyze and sketch each function using the algorithm for curve sketching

a)
$$k(x) = \frac{1}{4}x^4 - \frac{9}{2}x^2$$

c)
$$f(x) = \frac{x^2 + 2x - 4}{x^2}$$

14) Consider the graph to the right.

a) How many times does the function have a derivative = 0? How do you know?

b) State the sign of the first and second derivatives at the following times.

i) t = 3 s ii) t = 7 s iii) t = 10 s

15) A garbage can is in the shape of a cylinder with no lid. It needs to have a volume of 5000 cm³. What will be the radius and height of the can that uses the least amount of material to construct it? (Hint: Surface Area)

16) A carpenter builds an open box with a square base. She has 8 m^2 of wood available. Find the volume of the largest box she can build.

17) Sandy will make a closed rectangular jewellery box with a square base from two different woods. The wood from the top and botton costs \$0.0020/cm². The wood for the sides costs \$0.0030/cm². Find the dimensions that minimize the cost for a box with volume 4000 cm³.

18) A music store sells an average of 120 CDs per week at \$24 each. A market survey indicates that for each \$0.75 decrease in price, five additional CDs will be sold per week. The cost of producing x CDs is $C(x) = -0.003x^2 + 3x + 2000$. What price and quantity of CDs maximizes profit?

19) A boat leaves a dock at 2:00 p.m., heading west at 15 km/h. Another boat heads south at 12 km/h and reaches the same dock at 3:00 p.m. When were the boats closest to each other?

Answers:

