1) Sketch a graph of each function. Then, sketch a graph of the inverse of each function. Label each graph with its equation. Also, complete the table of information for each function
a) $f(x)=2^{x}$

	$\boldsymbol{f}(\boldsymbol{x})=$
-int:	x-int:
y-int:	y-int:
Domain:	Domain:
Range:	Range:
Asymptote:	Asymptote:

b) $g(x)=\left(\frac{1}{4}\right)^{x}$

$\boldsymbol{g}(\boldsymbol{x})=$	$\boldsymbol{g}^{\mathbf{- 1}}(\boldsymbol{x})=$
x-int:	x-int:
y-int:	y-int:
Domain:	Domain:
Range:	Range:
Asymptote:	Asymptote:

2) State the domain and range for the function, shown below.

Domain:

Range:

3) Match each graph in the table with the graph of its inverse ($A, B, o r C$). Then write an equation for each function
A)

B)

C)

4) Rewrite each equation in logarithmic form.
a) $4^{3}=64$
b) $28=3^{x}$
c) $6^{3}=y$
d) $512=2^{9}$
5) Rewrite each equation in exponential form.
a) $7=\log _{2} 128$
b) $x=\log _{b} n$
c) $5=\log _{3} 243$
d) $19=\log _{b} 4$
6) Evaluate without a calculator. Show your work.
a) $\log _{2} 16$
b) $\log _{3} 81$

Use either:

Rule: if $x^{a}=x^{b}$, then $a=b$

Rule: $\log _{a}\left(a^{b}\right)=b$
c) $\log _{4}\left(\frac{1}{16}\right)$
d) $\log 0.000001$
7) Evaluate each of the following without a calculator using the power law of logarithms.
a) $\log _{2} 32^{3}$
b) $\log 1000^{-2}$
c) $\log 0.001^{-1}$
d) $\log _{\frac{1}{4}}\left(\frac{1}{16}\right)^{4}$
8) Solve for x, correct to 3 decimal places.
a) $x=\log _{3} 17$
b) $\log _{2} 0.35=x$
c) $4^{x}=10$
d) $80=100\left(\frac{1}{2}\right)^{x}$
9) Use the change of base formula to evaluate. Round to one decimal place.
a) $\log _{9} 12$
b) $\log _{0.25} 52$
10) Write as a single logarithm. Then evaluate without a calculator.
a) $\frac{\log 16}{\log 4}$
b) $\frac{\log \left(\frac{8}{27}\right)}{\log \left(\frac{2}{3}\right)}$
11) Solve, to two decimal places
a) $\log 4^{x}=7$
b) $12=\log _{3} 4^{m}$
12) An investment earns 12% interest, compounded annually. The amount, A, tha the investment is worth as a function of time, t, in years, is given by $A=1500(1.12)^{t}$. Use the equation to determine...
a) the value of the investment after 4 years
b) how long it will take for the investment to double in value
13) Write as a single logarithm
a) $\log _{7} 8+\log _{7} 4-\log _{7} 16$
b) $2 \log a+\log (3 b)-\frac{1}{2} \log c$
14) Write as a sum or difference of logarithms. Simplify if possible.
a) $\log \left(a^{2} b c\right)$
b) $\log \left(\frac{k}{\sqrt{m}}\right)$
15) Evaluate, using the laws of logarithms.
a) $\log _{6} 8+\log _{6} 27$
b) $\log _{4} 128-\log _{4} 8$
c) $2 \log 2+2 \log 5$
d) $2 \log 3+\log \left(\frac{25}{2}\right)$
16) Simplify
a) $\log (2 m+6)-\log \left(m^{2}-9\right)$
b) $\log \left(x^{2}+2 x-15\right)-\log \left(x^{2}-7 x+12\right)$
17) Write each as a power of 4
a) 64
b) $\frac{1}{16}$
c) $(\sqrt[3]{8})^{5}$
18) Write 20 as a power of 5 .
19) Solve each equation
a) $3^{5 x}=27^{x-1}$
b) $8^{2 x+1}=32^{x-1}$
20) Solve exactly. Then use your calculator to evaluate correct to 3 decimal places.
a) $3^{x-2}=5^{x}$
b) $2^{k-2}=3^{k+1}$
21) Solve the following equations; round to 2 decimal places where appropriate.
a) $3^{x}=12$
b) $10=2 \cdot 4^{x+2}$
c) $3^{x}=4^{1-x}$
22) Solve each equation. Check for extraneous routes.
a) $4^{2 x}-4^{x}-20=0$
b) $2^{x}+12(2)^{-x}=7$
23) Solve each equation
a) $\log _{4} x=1.8$
b) $\log _{5} x-\log _{5}(x-2)=1$
c) $5^{2 x}=2(5)^{x}+1$
24) Solve
а) $\log (2 x+10)=2$
b) $1-\log (2 x)=0$
25) Solve. Check for extraneous roots.
a) $\log _{2} x+\log _{2}(x+2)=3$
b) $\log _{3}(3 x+7)=2$
c) $\log _{5}(2 x+1)=1-\log _{5}(x+2)$

Section 6: 7.4-Applications

Exponential Formulas

$A(t)=A_{0}(1+i)^{t} \quad A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{H}} \quad A(t)=A_{0}(2)^{\frac{t}{D}}$
general, where i is percent growth(+) or decay(-)

Logarithmic Formulas

$$
p H=-\log \left[H^{+}\right]
$$

Where pH is acidity and $[\mathrm{H}+]$ is concentration of hydronium ions $\mathrm{mol} / \mathrm{L}$

$$
\beta_{2}-\beta_{1}=10 \log \left(\frac{I_{2}}{I_{1}}\right)
$$

Where β is loudness in dB and I is intensity of sound in $\mathrm{W} / \mathrm{m}^{2}$

$$
M=\log \left(\frac{I}{I_{0}}\right)
$$

Where M is magnitude measure by richters, l is intensity
26) When you drink a cup of coffee or a glass of cola, or when you eat a chocolate bar, the percent, P, of caffeine remaining in your bloodstream is related to the elapsed time, t, in hours by $t=5\left(\frac{\log P}{\log 0.5}\right)$
a) How long will it take for the amount of caffeine to drop to 20% of the amount consumed?
b) Suppose you drink a cup of coffee at 9:00 am, what percent of the caffeine will remain in your body at noon?
27) A $50-\mathrm{mg}$ sample of cobalt- 60 decays to 40 mg after 1.6 minutes.
a) Determine the half-life of cobalt-60.
b) How long will it take for the sample to decay to 5% of its initial amount?
28) Determine the pH , correct to one decimal place, of a solution with each hydronium ion concentration.
a) $0.000316 \mathrm{~mol} / \mathrm{L}$
b) $7.9 \times 10^{-9} \mathrm{~mol} / \mathrm{L}$
29) Calculate the hydronium ion concentration, correct to two decimal places, if the pH of a solution is
a) 2.2
b) 11.6
30) Use the sound level scale in your notes to answer the following:
a) How many times as intense is a normal conversation compared to a whisper?
b) How many times as intense is normal city traffic compared to a shout?
31) The intensity of sound in a library is estimated to be one thousandth that of normal conversation. What is the decibel rating for the library?
32) How many times as intense is an earthquake with a magnitude of 7.2 than an earthquake with a magnitude of 5.6 ?
33) If an earthquake is 390 times as intense as an earthquake with a magnitude of 4.2 on the Richter scale, what is the magnitude of the more intense earthquake?
34) The absolute magnitude of star A is -4.5 and that of $\operatorname{star} B$ is 0.2 . How many times as bright is star A than star B, to the nearest unit?
35) An altimeter is a device that measures the height of a plane above the ground. It works based on air pressure according to the formula $h=18400 \log \frac{P_{0}}{P}$, where h is the height above the ground in metres, P is the air pressure at that height, and P_{0} was the air pressure on the ground at takeoff. Air pressure is measure in kilopascals (kPa).
a) Air pressure on the ground was 102 kPa . If the airplane instruments measure a pressure of 32.5 kPa outside the plane, what is the height of the airplane to the nearest metre?
b) What is the outside air pressure for a plane flying at 11000 metres? Assume a ground pressure 102.5 kPa . Round to one decimal place.
c) How high would a plane have to be flying when it encountered air pressure in the air that was half the air pressure on the ground? Round to the nearest meter.
36) Sketch a graph of each of the following exponential/logarithmic functions by applying transformations to the parent function. Make sure to identify key points such as asymptotes and x-intercepts.
a) $f(x)=2(2)^{-2 x-2}+1$

b) $g(x)=-(e)^{\frac{1}{2}(x+2)}+4$

c) $h(x)=-2 \log (x+4)+1$

d) $j(x)=3 \ln (x-1)+3$

37) Solve each equation. Round your answer to 4 decimal places if necessary.
a) $e^{3 x}=87$
b) $2 \mathrm{e}^{3 \mathrm{x}+1}=70$
c) $\ln (x+1)=\ln (2 x-5)$
d) $5 \ln x+2 \ln x-3=12$
e) $\ln (3 x)=2$
f) $1-2 e^{2 x}=-19$

Answer Key

See posted solutions for \#1-3
4)a) $\log _{4} 64=3 \quad$ b) $\log _{3} 28=x \quad$ c) $\log _{6} y=3 \quad$ d) $\log _{2} 512=9$
5)a) $2^{7}=128 \quad$ b) $b^{x}=n \quad$ c) $3^{5}=243 \quad$ d) $b^{19}=4$
6)a) 4 b) 4 c) -2 d) -6
7)a) 15 b) -6 c) 3 d) 8
8)a) 2.579 b) -1.515 c) 1.661 d) 0.322
9)a) 1.1 b) -2.9
10)a) $\log _{4} 16=2$ b) $\log _{\frac{2}{3}}\left(\frac{8}{27}\right)=3$
$\begin{array}{lll}\text { 11)a) } 11.63 & \text { b) } 9.51\end{array}$
12)a) $\$ 2360.28$ b) 6.12 years
13)a) $\log _{7} 2$ b) $\log \left(\frac{3 a^{2} b}{\sqrt{c}}\right)$
14)a) $2 \log a+\log b+\log c \quad$ b) $\log k-\frac{1}{2} \log m$
15)a) 3 b) 2 c) 2 d) 2.05
16)a) $\log \left(\frac{2}{m-3}\right)$ b) $\log \left(\frac{x+5}{x-4}\right)$
17)a) 4^{3} b) 4^{-2} c) $4^{\frac{5}{2}}$
18) $5^{\frac{\log 20}{\log 5}}$
19)a) $x=-\frac{3}{2}$ b) $x=-8$
20)a) $x=\frac{2 \log 3}{\log 3-\log 5} \cong-4.301 \quad$ b) $k=\frac{2 \log 2+\log 3}{\log 2-\log 3} \cong-6.129$

21a) 2.26 b) -0.84 c) 0.56
22)a) $x=\frac{\log 5}{\log 4} \cong 1.16$ b) $x=2$ or $x=\frac{\log 3}{\log 2} \cong 1.58$
23)a) 12.13 b) 2.5 c) $x=0.548$
24)a) 45 b) 5
$\begin{array}{lll}\text { 25)a) } 2 & \text { b) } \frac{2}{3} & \text { c) } \frac{1}{2}\end{array}$
26)a) 11.6 hours b) 66%
27)a) 5 min b) 21.6 min
$\begin{array}{lll}\text { 28)a) } 3.5 & \text { b) } 8.1\end{array}$
29) a) $6.31 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$ b) $2.51 \times 10^{-12} \mathrm{~mol} / \mathrm{L}$
$\begin{array}{ll}30) & \text { a) } 1000 \\ \text { b) } 3.2\end{array}$
31) 30 dB
32) 39.8
33) 6.8
34) a) 50119
35) a) 9140 m b) 25.9 kPa c) 5539 m

