MHF4U Test

Name:
Date:

Section 1: True or False [4K]

1) $\log (x+y)=\log x+\log y$

T
F
2) You can write $\log (20)-\log (5)$ as $\log (15)$ T
3) You can write $\frac{\log x}{\log y}$ as $\log \left(\frac{x}{y}\right)$ T
4) $4 \log (x)=\log \left(x^{4}\right)$ T

Section 2: Multiple Choice: Write the letter of the correct answer on the line [4K]
__ 5) Evaluate $\log (1)$
a) 2
b) 10
c) 1
d) 0
6) Re-write $\log _{4} 52=y$ in exponential form
a) $4^{y}=52$
b) $y^{4}=52$
c) $52^{y}=4$
d) $4^{52}=y$
___ Evaluate $\log _{5}(\sqrt{25})$
a) $\frac{1}{2}$
b) 1
c) 2
d) $\frac{5}{2}$
\qquad 8) Evaluate $\log _{3}(-9)$
a) -3
b) 2
c) -2
d) Does not exist
9) Write as a single logarithm and then evaluate. Round to 2 decimal places if necessary.
a) $\log _{2}(80)-\log _{2}(10)$
b) $\log _{3}(4)+2 \log _{3}(4)-\log _{3}(8)$
c) $\frac{\log _{9}(20)}{\log _{9}(8)}$
d) $\log \left(x^{2}-4\right)-\log \left(x^{2}-6 x+8\right)$
10) Is it possible to write 20 as a base 3 power? If so, write it. If not, explain why not.
11) Solve each exponential equation. Use and show appropriate methods. Round to 3 decimal places where necessary.
a) $2^{x-1}=(8)^{2 x+3}$
b) $21^{x+3}=14$
c) $3^{x+5}=5^{2 x-1}$
d) $5^{2 x}+8\left(5^{x}\right)-20=0$
12) Solve the following logarithmic equations. Use and show appropriate methods. Round to 3 decimal places where necessary. Make sure to check for extraneous roots where necessary.
a) $\log \sqrt{x^{2}-3 x}=\frac{1}{2}$
b) $\log (x+2)+\log (x-1)=1$
c) $4=\log _{2}(2 x-10)$
d) $\log (x+5)=2 \log (x-1)$
e) $12=\log _{2}\left(8^{x}\right)$
f) $\log \left(2 x^{4}\right)-3 \log (x)=\log (2)$

EXTRA FUN: Write $\left(\log _{a} b\right)\left(\log _{b} c\right)\left(\log _{c} d\right)$ as a single logarithm.

