	Total		/48
MHF4U Test Chapter 3c – Logarith	Name: Date:		
Section 1: True or False [4K]			
$1)\log(x+y) = \log x + \log y$		Т	F
2) You can write $\log(20) - \log(5)$ as $\log(15)$		Т	F
3) You can write $\frac{\log x}{\log y}$ as $\log\left(\frac{x}{y}\right)$		Т	F
4) $4\log(x) = \log(x^4)$		Т	F

Section 2: Multiple Choice: Write the letter of the correct answer on the line [4K]

5) Evaluate log(1) **a**) 2 **b)** 10 **c)** 1 **d**) 0 **6**) Re-write $\log_4 52 = y$ in exponential form **a**) $4^y = 52$ **b**) $y^4 = 52$ c) $52^y = 4$ **d**) $4^{52} = y$ 7) Evaluate $\log_5(\sqrt{25})$ **a**) $\frac{1}{2}$ **b**) 1 c) 2 d) $\frac{5}{2}$ **8**) Evaluate $\log_3(-9)$ **a**) -3 **b)** 2 **c**) -2 d) Does not exist

Section 3: Simplifying Expressions and Solving Equations [38]

9) Write as a single logarithm and then evaluate. Round to 2 decimal places if necessary. [8K]

a) $\log_2(80) - \log_2(10)$ **b**) $\log_3(4) + 2\log_3(4) - \log_3(8)$

c) $\frac{\log_9(20)}{\log_9(8)}$

d) $\log(x^2 - 4) - \log(x^2 - 6x + 8)$

[2T]

10) Is it possible to write 20 as a base 3 power? If so, write it. If not, explain why not.

11) Solve each exponential equation. Use and show appropriate methods. Round to 3 decimal places where necessary. [12A]

a)
$$2^{x-1} = (8)^{2x+3}$$
 b) $21^{x+3} = 14$

c) $3^{x+5} = 5^{2x-1}$ d) $5^{2x} + 8(5^x) - 20 = 0$

12) Solve the following logarithmic equations. Use and show appropriate methods. Round to 3 decimal places where necessary. Make sure to check for extraneous roots where necessary. [18A]

a)
$$\log \sqrt{x^2 - 3x} = \frac{1}{2}$$

b) $\log(x + 2) + \log(x - 1) = 1$

c) $4 = \log_2(2x - 10)$ d) $\log(x + 5) = 2\log(x - 1)$

e) $12 = \log_2(8^x)$

f) $\log(2x^4) - 3\log(x) = \log(2)$

EXTRA FUN: Write $(\log_a b)(\log_b c)(\log_c d)$ as a single logarithm.