```
Unit 5 Pre-Test Review - Cartesian Vectors
Unit 5
MCV4U
Jensen
```

1) Express each vector in terms of vectors $\hat{\imath}$ and $\hat{\jmath}$
a) $[-3,-6]$
b) $[0,-8]$
c) $[-6,0]$
2) Express each vector in the form $[a, b]$
a) $-4 \hat{\imath}$
b) $7 \hat{\imath}-4 \hat{\jmath}$
c) $2 \hat{\jmath}$
3) Write the coordinates of each Cartesian Vector in the form [a, b] and determine its magnitude.

4) You are given the vector $\vec{v}=[5,-1]$. An equivalent vector $\overrightarrow{P Q}$ has its initial point at $P(-2,-7)$. Determine the coordinates of Q.
5) Given the points $P(-6,1), Q(-2,-1)$, and $R(-3,4)$, find
a) $\overrightarrow{Q P}$
b) $|\overrightarrow{R P}|$
c) the perimeter of $\triangle P Q R$
6) If $\vec{u}=[4,-1]$ and $\vec{v}=[2,7]$, find
a) $8 \vec{u}$
b) $-8 \vec{u}$
c) $\vec{u}+\vec{v}$
d) $\vec{v}-\vec{u}$
e) $5 \vec{u}-3 \vec{v}$
f) $-4 \vec{u}+7 \vec{v}$
7) Which vector is collinear with $\vec{a}=[6,-4]$? Give proof.
$\vec{b}=[-9,6], \vec{c}=[-6,-4]$
8) A person pulls a sleigh, exerting a force of 180 N along a rope that makes an angle of 30° to the horizontal. Write this force in component form as a Cartesian vector.
9) A person pushes a lawnmower with a force of 250 N . The handle makes an angle of 35° with the ground. Write this force in component form as a Cartesian vector.
10) A ship's course is set at a heading of 192°, with a speed of 30 knots. A current is flowing from a bearing of 112°, at 14 knots. Use Cartesian vectors to determine the resultant velocity of the ship.
11) Calculate the dot product of each pair of vectors.
a)

b)

c)

d) $\vec{u}=[2,4], \vec{v}=[3,-1]$
e) $\vec{s}=[9,-3], \vec{t}=[3,-3]$
f) $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}, \vec{b}=9 \hat{\imath}-7 \hat{\jmath}$
12) Let $\vec{u}=[3,-5], \vec{v}=[-6,1]$, and $\vec{w}=[4,7]$. Evaluate each of the following if possible. If it is not possible, explain why not.
a) $\vec{u} \cdot(\vec{v}+\vec{w})$
b) $(\vec{u}+\vec{v}) \cdot(\vec{u}-\vec{v})$
c) $\vec{u}+\vec{v} \cdot \vec{w}$
d) $-3 \vec{v} \cdot(2 \vec{w})$
e) $(\vec{u}+2 \vec{v}) \cdot(3 \vec{w}-\vec{u})$
f) $\vec{v} \cdot \vec{v}+\vec{w} \cdot \vec{w}$
13) $\triangle A B C$ has points $A(3,1), B(-2,3)$, and $C(5,6)$. Is it a right-angled triangle? If it is, identify the right angle.
14) Find a vector that is perpendicular to $\vec{u}=[9,2]$. Verify that the vectors are perpendicular.
15) Determine the value of k so that $\vec{u}=[2,5]$ and $\vec{v}=[k, 4]$ are perpendicular.
16) Determine the value of k so that $\vec{u}=[k, 3]$ and $\vec{v}=[k, 2 k]$ are perpendicular.
17) Determine the work done by force \vec{F}, in Newtons, for an object moving along the vector \vec{s}, in meters.
a) $\vec{F}=[5,2], \vec{s}=[7,4]$
b) $\vec{F}=[100,400], \vec{s}=[12,27]$
c)

18) Calculate the angle between the vectors in each pair.
a) $\vec{p}=[7,8], \vec{q}=[4,3]$
b) $\vec{t}=[-7,2], \vec{u}=[6,11]$
19) Determine the projection of \vec{u} on \vec{v}
a) $|\vec{u}|=56,|\vec{v}|=100$, angle θ between \vec{u} and \vec{v} is 125°.
b) $\vec{u}=[7,1], \vec{v}=[9,-3]$
20) Find the magnitude of the projection of \vec{a} on \vec{b} and also the vector projection of \vec{a} on \vec{b} if $\vec{a}=[6,-1]$ and $\vec{b}=[11,5]$
21) A superhero pulls herself 15 m up the side of a wall with a with a force of 500 N , at an angle of 12° to the vertical. What is the work done?

22) A crate is dragged 3 meters along a smooth level floor by a 30 N force, applied at 25° to the floor. Then, it is pulled 4 meters up a ramp inclined at 20° to the horizontal, using the same force. Then, the crate is dragged a further 5 meters along a level platform using the same force again. Determine the total work done in moving the crate.
23) How much work is done against gravity by a worker who carries a $25-\mathrm{kg}$ carton up a 6 meter long set of stairs, inclined at 30°.
24) Draw each position vector. Then, determine its exact magnitude.
$\vec{a}=[-1,5,-2]$
$\vec{b}=[-2,0,-4]$
25) Are the vectors $\vec{u}=[6,-2,-5]$ and $\vec{v}=[-12,4,10]$ collinear? Explain.
26) Find a and b such that $\vec{u}=[a, 3,6]$ and $\vec{v}=[-8,12, b]$ are collinear.
27) Draw the vector $\overrightarrow{A B}$ joining each pair of points. Then, write the vector in the form $[x, y, z]$ and determine its magnitude.
a) $A(2,13), B(5,7,1)$
b) $A(3,-4,1), B(6,-1,5)$
28) Given the vectors $\vec{a}=[-4,1,7], \vec{b}=[2,0,-3]$, and $\vec{c}=[1,-1,5]$, simplify each expression.
a) $7 \vec{a}$
b) $3 \vec{a}-2 \vec{b}+4 \vec{c}$
c) $\vec{a} \cdot \vec{c}$
d) $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})$
29) Determine the angle between the vectors $\vec{g}=[6,1,2]$ and $\vec{h}=[-5,3,6]$
30) Determine a vector that is orthogonal to $\vec{e}=[3,-1,4]$
31) Identify the type of triangle with vertices $A(2,3,-5), B(-4,8,1)$, and $C(6,-4,0)$.
32) Determine $\vec{u} \times \vec{v}$

33) Determine $\vec{a} \times \vec{b}$ for each pair of vectors
a) $\vec{a}=[3,-2,9], \vec{b}=[1,1,6]$
b) $\vec{a}=[-8,10,3], \vec{b}=[2,0,5]$
34) Determine the area of the parallelogram defined by each pair of vectors.
a) $\vec{p}=[6,3,8], \vec{q}=[3,3,5]$
b)

35) Given $\vec{a}=[2,-6,3], \vec{b}=[-1,5,8]$, and $\vec{c}=[-4,5,6]$, evaluate each of the following.
a) $\vec{a} \times(\vec{b}+\vec{c})$
b) $\vec{a} \times \vec{b}-\vec{a} \times \vec{c}$
36) A bicycle pedal is pushed by a $75-\mathrm{N}$ force, exerted as shown in the diagram. The shaft of the pedal is 15 cm long. Find the magnitude of the torque vector, in Newton-meters, about point A.
37) A force of $\vec{F}=[3,5,12]$, in Newtons, is applied to lift a box, with
 displacement $\vec{S}=[2,1,6]$. Calculate the work against gravity and compare it to the work in the direction of travel.
38) Determine the projection, and its magnitude, of $\vec{u}=[3,1,4]$ on $\vec{v}=[6,2,7]$.
39) Given $\vec{a}=[-2,3,5], \vec{b}=[4,0,-1]$, and $\vec{c}=[2,-2,3]$, evaluate $\vec{a} \cdot \vec{b} \times \vec{c}$
40) Find the volume of the parallelepiped, defined by the vectors $\vec{u}=[1,4,3], \vec{v}=[2,5,6]$, and $\vec{w}=[1,2,7]$.
41) A triangle has vertices $A(-2,1,3), B(7,8,-4)$, and $C(5,0,2)$. Determine the area of $\triangle A B C$.

Answers:

$\begin{array}{lll}\text { 1)a) }-3 \hat{\imath}-6 \hat{\jmath} & \text { b) }-8 \hat{\jmath} & \text { c) }-6 \hat{\imath}\end{array}$
$\begin{array}{lll}\text { 2)a) }[-4,0] & \text { b) }[7,-4] & \text { c) }[0,2]\end{array}$
3) $\overrightarrow{A B}=[2,-5],|\overrightarrow{A B}|=\sqrt{29}$ units; $\overrightarrow{C D}=[5,1],|\overrightarrow{C D}|=\sqrt{26}$ units; $\overrightarrow{E F}=[0,7],|\overrightarrow{E F}|=7$ units; $\overrightarrow{G H}=[-2,9],|\overrightarrow{G H}|=\sqrt{85}$ units 4) $Q(3,-8)$
5) $[-4,2]$ b) $3 \sqrt{2}$ units c) 13.8 units
$\begin{array}{llllll}6) a) & {[32,-8]} & \text { b) }[-32,8] & \text { c) }[6,6] & \text { d) }[-2,8] & \text { e) }[14,-26]\end{array}$ f) $[-2,53]$
7) \vec{b} is collinear with \vec{a}; $\vec{b}=-\frac{3}{2} \vec{a}$
8) $\left[180 \cos 30^{\circ}, 180 \sin 30^{\circ}\right]$
9) $\left[250 \cos \left(-35^{\circ}\right), 250 \sin \left(-35^{\circ}\right)\right]$
10) $30.8 \mathrm{~km} / \mathrm{h}$ on a bearing of 218.6°
$\begin{array}{llllll}\text { 11)a) } 2753.3 & \text { b) }-83.1 & \text { c) } 0 & \text { d) } 2 & \text { e) } 36 & \text { f) }-3\end{array}$
$\begin{array}{llll}\text { 12)a) }-46 & \text { b) }-3 & \text { c) This is not possible. It is the sum of a vector and a scalar. d) } 102 & \text { e) }-159\end{array}$ f) 102
13) It is a right angled triangle. $\angle A$ is the right angle.
14) $[2,-9]$
15) $k=-10$
16) $k=0,-6$
17)a) 43 J b) 12000 J c) 1891.6 J
18)a) 11.9° b) 102.7°
$\begin{array}{lll}\text { 19)a) }-32.1 \hat{v} & \text { b) }[6,-2]\end{array}$
20) $\left|\operatorname{proj}_{\vec{b}} \vec{a}\right|=\frac{61}{\sqrt{146}} ; \operatorname{proj}_{\vec{b}} \vec{a}=\left[\frac{671}{146}, \frac{305}{146}\right]$
21) 7336.1 J
22) 337.1 J
23) 735 J
24) $|\vec{a}|=\sqrt{30} ;|\vec{b}|=2 \sqrt{5}$

25) Yes. $\vec{v}=-2 \vec{u}$
26) $a=-2, b=24$
27)a) $\overrightarrow{A B}=[3,6,-2] ;|\overrightarrow{A B}|=7$
b) $\overrightarrow{A B}=[3,3,4] ;|\overrightarrow{A B}|=\sqrt{34}$

28)a) $[-28,7,49]$ b) $[-12,-1,47]$ c) 30 d) 53
29) 106.3°
30) Answers will vary. Ex. $[0,4,1]$. Use dot product to verify your answer
31) Scalene
32) $3931.9 \hat{n}$
33)a) $[-21,-9,5] \quad$ b) $[50,46,-20]$
34)a) $3 \sqrt{22}$ units 2 b) 615.2 units 2
35)a) $[-114,-43,-10] \quad$ b) $[-12,5,18]$
36) $11.1 \mathrm{~N} \cdot \mathrm{~m}$
37) 72 J ; 83 J
38) $\frac{48}{89}[6,2,7] ; \frac{48}{\sqrt{89}}$
39) -78
40) 12 units 3
41) 35.9 units 2

