Unit 5 Pre-Test Revi MCV4U Jensen	i <mark>ew – Cartesian Vectors</mark>		Unit 5
 1) Express each vect a) [-3, -6] 	for in terms of vectors \hat{i} and \hat{j} b) [0, -8]	c) [—6,0]	
2) Express each vect	for in the form $[a, b]$		
a) $-4\hat{\iota}$	b) $7\hat{\imath} - 4\hat{j}$	c) 2 <i>ĵ</i>	

3) Write the coordinates of each Cartesian Vector in the form [a, b] and determine its magnitude.

4) You are given the vector $\vec{v} = [5, -1]$. An equivalent vector \overrightarrow{PQ} has its initial point at P(-2, -7). Determine the coordinates of Q.

5) Given the points P(-6,1), Q(-2,-1), and R(-3,4), find

a) \overrightarrow{QP} b) $|\overrightarrow{RP}|$ c) the perimeter of ΔPQR 6) If $\vec{u} = [4, -1]$ and $\vec{v} = [2,7]$, find a) $8\vec{u}$ b) $-8\vec{u}$ c) $\vec{u} + \vec{v}$ d) $\vec{v} - \vec{u}$ e) $5\vec{u} - 3\vec{v}$ f) $-4\vec{u} + 7\vec{v}$

7) Which vector is collinear with $\vec{a} = [6, -4]$? Give proof.

 $\vec{b} = [-9,6], \vec{c} = [-6,-4]$

8) A person pulls a sleigh, exerting a force of 180 N along a rope that makes an angle of 30° to the horizontal. Write this force in component form as a Cartesian vector.

9) A person pushes a lawnmower with a force of 250 N. The handle makes an angle of 35° with the ground. Write this force in component form as a Cartesian vector.

10) A ship's course is set at a heading of 192° , with a speed of 30 knots. A current is flowing from a bearing of 112° , at 14 knots. Use Cartesian vectors to determine the resultant velocity of the ship.

11) Calculate the dot product of each pair of vectors.

12) Let $\vec{u} = [3, -5]$, $\vec{v} = [-6, 1]$, and $\vec{w} = [4, 7]$. Evaluate each of the following if possible. If it is not possible, explain why not.

a) $\vec{u} \cdot (\vec{v} + \vec{w})$ b) $(\vec{u} + \vec{v}) \cdot (\vec{u} - \vec{v})$ c) $\vec{u} + \vec{v} \cdot \vec{w}$ d) $-3\vec{v} \cdot (2\vec{w})$ e) $(\vec{u} + 2\vec{v}) \cdot (3\vec{w} - \vec{u})$ f) $\vec{v} \cdot \vec{v} + \vec{w} \cdot \vec{w}$

13) $\triangle ABC$ has points A(3,1), B(-2,3), and C(5,6). Is it a right-angled triangle? If it is, identify the right angle. **14)** Find a vector that is perpendicular to $\vec{u} = [9,2]$. Verify that the vectors are perpendicular.

15) Determine the value of k so that $\vec{u} = [2,5]$ and $\vec{v} = [k, 4]$ are perpendicular.

16) Determine the value of k so that $\vec{u} = [k, 3]$ and $\vec{v} = [k, 2k]$ are perpendicular.

17) Determine the work done by force \vec{F} , in Newtons, for an object moving along the vector \vec{s} , in meters.

a)
$$\vec{F} = [5,2], \vec{s} = [7,4]$$

b) $\vec{F} = [100,400], \vec{s} = [12,27]$
c)
 $|\vec{F}| = 241 \text{ N}$

18) Calculate the angle between the vectors in each pair.

a) $\vec{p} = [7,8], \vec{q} = [4,3]$ **b)** $\vec{t} = [-7,2], \vec{u} = [6,11]$ **19)** Determine the projection of \vec{u} on \vec{v} **a)** $|\vec{u}| = 56$, $|\vec{v}| = 100$, angle θ between \vec{u} and \vec{v} is 125°. **b)** $\vec{u} = [7,1], \vec{v} = [9,-3]$

20) Find the magnitude of the projection of \vec{a} on \vec{b} and also the vector projection of \vec{a} on \vec{b} if $\vec{a} = [6, -1]$ and $\vec{b} = [11, 5]$

21) A superhero pulls herself 15 m up the side of a wall with a with a force of 500 N, at an angle of 12° to the vertical. What is the work done?

22) A crate is dragged 3 meters along a smooth level floor by a 30 N force, applied at 25° to the floor. Then, it is pulled 4 meters up a ramp inclined at 20° to the horizontal, using the same force. Then, the crate is dragged a further 5 meters along a level platform using the same force again. Determine the total work done in moving the crate.

23) How much work is done against gravity by a worker who carries a 25-kg carton up a 6 meter long set of stairs, inclined at 30°.

24) Draw each position vector. Then, determine its exact magnitude.

 $\vec{a} = [-1,5,-2]$ $\vec{b} = [-2,0,-4]$

25) Are the vectors $\vec{u} = [6, -2, -5]$ and $\vec{v} = [-12, 4, 10]$ collinear? Explain.

26) Find *a* and *b* such that $\vec{u} = [a, 3, 6]$ and $\vec{v} = [-8, 12, b]$ are collinear.

27) Draw the vector \overrightarrow{AB} joining each pair of points. Then, write the vector in the form [x, y, z] and determine its magnitude.

a) A(2,13), B(5,7,1) **b)** A(3,-4,1), B(6,-1,5)

28) Given the vectors $\vec{a} = [-4,1,7]$, $\vec{b} = [2,0,-3]$, and $\vec{c} = [1,-1,5]$, simplify each expression.

a) $7\vec{a}$ b) $3\vec{a} - 2\vec{b} + 4\vec{c}$ c) $\vec{a} \cdot \vec{c}$ d) $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b})$

- **29)** Determine the angle between the vectors $\vec{g} = [6,1,2]$ and $\vec{h} = [-5,3,6]$
- **30)** Determine a vector that is orthogonal to $\vec{e} = [3, -1, 4]$
- **31)** Identify the type of triangle with vertices A(2,3,-5), B(-4,8,1), and C(6,-4,0).
- **32)** Determine $\vec{u} \times \vec{v}$

- **33)** Determine $\vec{a} \times \vec{b}$ for each pair of vectors
- **a)** $\vec{a} = [3, -2, 9], \vec{b} = [1, 1, 6]$ **b)** $\vec{a} = [-8, 10, 3], \vec{b} = [2, 0, 5]$

34) Determine the area of the parallelogram defined by each pair of vectors.

35) Given $\vec{a} = [2, -6, 3]$, $\vec{b} = [-1, 5, 8]$, and $\vec{c} = [-4, 5, 6]$, evaluate each of the following.

a) $\vec{a} \times (\vec{b} + \vec{c})$ b) $\vec{a} \times \vec{b} - \vec{a} \times \vec{c}$

36) A bicycle pedal is pushed by a 75-N force, exerted as shown in the diagram. The shaft of the pedal is 15 cm long. Find the magnitude of the torque vector, in Newton-meters, about point A.

37) A force of $\vec{F} = [3,5,12]$, in Newtons, is applied to lift a box, with displacement $\vec{s} = [2,1,6]$. Calculate the work against gravity and compare it to the work in the direction of travel.

38) Determine the projection, and its magnitude, of $\vec{u} = [3,1,4]$ on $\vec{v} = [6,2,7]$. **39)** Given $\vec{a} = [-2,3,5]$, $\vec{b} = [4,0,-1]$, and $\vec{c} = [2,-2,3]$, evaluate $\vec{a} \cdot \vec{b} \times \vec{c}$ **40)** Find the volume of the parallelepiped, defined by the vectors $\vec{u} = [1,4,3]$, $\vec{v} = [2,5,6]$, and $\vec{w} = [1,2,7]$. **41)** A triangle has vertices A(-2,1,3), B(7,8,-4), and C(5,0,2). Determine the area of ΔABC .

Answers:

1)a) $-3\hat{\imath} - 6\hat{\jmath}$ **b)** $-8\hat{\jmath}$ **c)** $-6\hat{\imath}$ **2)a)** [-4,0] **b)** [7,-4] **c)** [0,2] **3)** $\overrightarrow{AB} = [2, -5], |\overrightarrow{AB}| = \sqrt{29}$ units; $\overrightarrow{CD} = [5, 1], |\overrightarrow{CD}| = \sqrt{26}$ units; $\overrightarrow{EF} = [0, 7], |\overrightarrow{EF}| = 7$ units; $\overrightarrow{GH} = [-2, 9], |\overrightarrow{GH}| = \sqrt{85}$ units **4)** Q(3, -8) **5)** [-4,2] b) $3\sqrt{2}$ units c) 13.8 units **6)a)** [32, -8] **b)** [-32, 8] **c)** [6, 6] **d)** [-2, 8] **e)** [14, -26] **f)** [-2, 53]7) \vec{b} is collinear with \vec{a} ; $\vec{b} = -\frac{3}{2}\vec{a}$ **8)** [180 cos 30°, 180 sin 30°] **9)** $[250 \cos(-35^\circ), 250 \sin(-35^\circ)]$ 10) 30.8 km/h on a bearing of 218.6° **11)a)** 2753.3 **b)** -83.1 **c)** 0 **d)** 2 **e)** 36 **f)** -3 12)a) -46 b) -3 c) This is not possible. It is the sum of a vector and a scalar. d) 102 e) -159 f) 102 **13)** It is a right angled triangle. $\angle A$ is the right angle. **14)** [2, -9] **15)** k = -10**16)** k = 0, -617)a) 43 J b) 12 000 J c) 1891.6 J **18)a)** 11.9° **b)** 102.7° **19)a)** $-32.1\hat{v}$ **b)** [6, -2] **20)** $\left| \text{proj}_{\vec{b}} \vec{a} \right| = \frac{61}{\sqrt{146}}$; $\text{proj}_{\vec{b}} \vec{a} = \left[\frac{671}{146}, \frac{305}{146} \right]$ **21)** 7336.1 J 22) 337.1 J 23) 735 J **24)** $|\vec{a}| = \sqrt{30}; |\vec{b}| = 2\sqrt{5}$ 12 .12 . 1 2 2 7 2 2 10 11 12 **25)** Yes. $\vec{v} = -2\vec{u}$ **26)** *a* = −2, *b* = 24 **27)a)** $\overrightarrow{AB} = [3,6,-2]; |\overrightarrow{AB}| = 7$ **b)** $\overrightarrow{AB} = [3,3,4]; |\overrightarrow{AB}| = \sqrt{34}$ 22420720 **28)a)** [-28,7,49] **b)** [-12,-1,47] **c)** 30 **d)** 53 **29)** 106.3° **30)** Answers will vary. Ex. [0,4,1]. Use dot product to verify your answer 31) Scalene **32)** 3931.9*î* **33)a)** [-21, -9,5] **b)** [50,46, -20] **34)a)** $3\sqrt{22}$ units² **b)** 615.2 units² **35)a)** [-114, -43, -10] **b)** [-12, 5, 18] **36)** 11.1 *N* · *m* **37)** 72 J; 83 J

38) $\frac{48}{89}$ [6,2,7]; $\frac{48}{\sqrt{89}}$

39) –78

40) 12 units³

41) 35.9 units²