Vectors Exam Review

Unit 4 – Geometric Vectors

1) Write each true bearing as an equivalent quadrant bearing.

a) 130°

b) 330°

2) Write each quadrant bearing as an equivalent true bearing

a) S20°W **b)** E47°N

3) Consider these vectors. List the vectors in each set.

a) same direction as \overrightarrow{AB}

b) parallel to \overrightarrow{AB}

c) equivalent to \overrightarrow{AB}

d) opposite to \overrightarrow{AB}

4) Given vectors \vec{a} , \vec{b} , and \vec{c} , draw each of the following:

a) $\vec{a} + \vec{b}$ b) $\vec{a} + \vec{b} + \vec{c}$ c) $\vec{a} - \vec{b}$ d) $\vec{a} + \vec{c} - \vec{b}$ e) $2\vec{b} - \vec{c}$ f) $-2\vec{a}$

5) Consider the regular hexagon ABCDEFG with G at the center. $\overrightarrow{AB} = \vec{u}$ and $\overrightarrow{BC} = \vec{w}$. Write each of the following vectors in terms of \vec{u} and \vec{w} . **Note:** each triangle is equilateral.

a) \overrightarrow{FE} b) \overrightarrow{DE} c) \overrightarrow{DA} d) \overrightarrow{GE} e) \overrightarrow{AE}

 \vec{b}

 \vec{c}

6) The diagram shows a parallelepiped. Determine a single vector that is equivalent to each sum or difference.

7) In the diagram, C is the midpoint of WZ, and A and B are the points of trisection of XY. Express each vector in terms of a linear combination of $\vec{u} = \vec{X}\vec{W}$ and $\vec{v} = \vec{W}\vec{Z}$

8) Given that $|\vec{u}| = 12$ and $|\vec{v}| = 5$ and the angle between \vec{u} and \vec{v} is 30° determine:

a) the unit vector in the direction of $\vec{u} + \vec{v}$ b) $|3\vec{u} + 2\vec{v}|$

9) An airplane is flying with airspeed 400 km/h on a heading of 000°. There is a 50 km/h wind blowing from the direction 090°. Calculate the ground velocity of the plane.

10) An object weighing 400 N is hanging from two ropes. The ropes make are attached to the ceiling. One makes an angle of 40° with the ceiling the other makes an angle of 50° with the ceiling.

11) A car is moving north at a speed of 25 m/s. A child in the back seat of the car throws a toy to the passenger in the front seat with a speed of 10 m/s in the direction forward 50° right (relative to the car). Calculate the speed and direction of the toy relative to the road.

12) A sign weighing 98 N is suspended from the middle of a 4 m long chain. The ends of the chain are attached to a ceiling at points 3 m apart. Determine the tensions in the chains.

13) A canoeist leaves a dock and paddles her canoe at an angle across a river. The current is flowing at 3 km/h. The resulting velocity of the boat is 5.4 km/h downstream, in a direction that forms a 15° angle with the adjacent shore. Determine the canoeist's velocity relative to the water.

14) A pilot flies with a heading of 160° and an airspeed of 250 km/h. There is a steady wind of 30 km/h from the direction 030° . Calculate the ground velocity of the plane.

15) A pilot flies on a heading of $N40^{\circ}W$ with an airspeed of 240 km/h. Her actual ground velocity is 250 km/h at a bearing of $N42^{\circ}W$.

16) Determine the vertical and horizontal components of each force.

a) 30 N at an inclination of 40° counter clockwise from the horizontal
b) 50 m/s, 50° clockwise from the horizontal

17) A 500 N create is resting on a ramp that is inclined 8° counter clockwise from the horizontal. Resolve the weight into two rectangular components, one parallel to the ramp and the other perpendicular to the ramp.

18) A person is pushing on the handle of a lawn mower with a force of 400 N acting 30° clockwise below the horizontal. What is the magnitude of the force pushing the lawn mower horizontally? Pushing down on the lawn mower?

19) A plane on takeoff has a velocity of 300 km/h at an angle of 10° up from the horizontal. Calculate the rate at which the plane is climbing and its horizontal speed to one decimal place.

Unit 4 Answers

1)a) S50°E **b)** N30°W **2)a)** 200° **b)** 43° **3)a)** \overrightarrow{EF} , \overrightarrow{GH} , \overrightarrow{IK} **b)** \overrightarrow{CD} , \overrightarrow{EF} , \overrightarrow{GH} , \overrightarrow{IK} **c)** \overrightarrow{EF} , \overrightarrow{IK} **d)** \overrightarrow{CD}

5)a) \vec{w} b) $-\vec{u}$ c) $-2\vec{w}$ d) $\vec{w} - \vec{u}$ e) $2\vec{w} - \vec{u}$

6)a) \overrightarrow{EB} or \overrightarrow{HC} **b)** \overrightarrow{AF} or \overrightarrow{DG} **c)** \overrightarrow{AF} or \overrightarrow{DG} **d)** \overrightarrow{EC} **e)** \overrightarrow{AG} **f)** \overrightarrow{EF}

7)a)
$$\frac{1}{3}\vec{v}$$
 b) $\frac{2}{3}\vec{v} + \vec{u}$ c) $-\vec{u} + \frac{2}{3}\vec{v}$ d) $\vec{u} + \frac{1}{6}\vec{v}$
8)a) $\frac{1}{\sqrt{169+60\sqrt{3}}}(\vec{u} + \vec{v})$ b) $\sqrt{1396+360\sqrt{3}}$

- **9)** 403 km/h *N*7.1°*W*
- 10) For the shorter rope: 306.4 N; for the longer rope: 257.1 N
- 11) 32 m/s forward 14° right
- 12) 74.1 N
- 13) 2.6 km/h at an angle of 32.2° with the adjacent shore
- 14) 270 km/h S15°E
- 15) 13 km/h N82°W
- **16)a)** $\vec{F}_h = 23 \text{ N}; \vec{F}_v = 19 \text{ N}$ **b)** $\vec{F}_h = 32 \text{ m/s}; \vec{F}_v = 38 \text{ m/s}$
- **17)** $|\vec{n}| = 495 \text{ N}; |\vec{f}| = 70 \text{ N}$
- 18) horizontal force: 346 N; downward force: 200 N
- **19)** $\vec{v}_h = 52.1$ km/h; $\vec{v}_v = 295.4$ km/h