Vectors Exam Review

Unit 4-Geometric Vectors

1) Write each true bearing as an equivalent quadrant bearing.
a) 130°
b) 330°
2) Write each quadrant bearing as an equivalent true bearing
a) $S 20^{\circ} \mathrm{W}$
b) $E 47^{\circ} \mathrm{N}$
3) Consider these vectors. List the vectors in each set.
a) same direction as $\overrightarrow{A B}$
b) parallel to $\overrightarrow{A B}$
c) equivalent to $\overrightarrow{A B}$
d) opposite to $\overrightarrow{A B}$

4) Given vectors \vec{a}, \vec{b}, and \vec{c}, draw each of the following:
a) $\vec{a}+\vec{b}$
b) $\vec{a}+\vec{b}+\vec{c}$
c) $\vec{a}-\vec{b}$
d) $\vec{a}+\vec{c}-\vec{b}$
e) $2 \vec{b}-\vec{c}$
f) $-2 \vec{a}$

5) Consider the regular hexagon $A B C D E F G$ with G at the center. $\overrightarrow{A B}=\vec{u}$ and $\overrightarrow{B C}=\vec{w}$. Write each of the following vectors in terms of \vec{u} and \vec{w}. Note: each triangle is equilateral.
a) $\overrightarrow{F E}$
b) $\overrightarrow{D E}$
c) $\overrightarrow{D A}$
d) $\overrightarrow{G E}$
e) $\overrightarrow{A E}$

6) The diagram shows a parallelepiped. Determine a single vector that is equivalent to each sum or difference.
a) $\overrightarrow{A B}-\overrightarrow{B F}$
b) $\overrightarrow{A B}+\overrightarrow{C G}$
c) $\overrightarrow{E F}+\overrightarrow{D H}$
d) $\overrightarrow{A B}+\overrightarrow{H D}+\overrightarrow{F G}$
e) $\overrightarrow{A B}-\overrightarrow{H D}+\overrightarrow{F G}$
f) $\overrightarrow{E D}+\overrightarrow{A B}-(\overrightarrow{H G}+\overrightarrow{F B})$

7) In the diagram, C is the midpoint of $W Z$, and A and B are the points of trisection of $X Y$. Express each vector in terms of a linear combination of $\vec{u}=\overrightarrow{X W}$ and $\vec{v}=\overrightarrow{W Z}$
a) $\overrightarrow{A B}$
b) $\overrightarrow{A Z}$
c) $\overrightarrow{W B}$
d) $\overrightarrow{A C}$

8) Given that $|\vec{u}|=12$ and $|\vec{v}|=5$ and the angle between \vec{u} and \vec{v} is 30° determine:
a) the unit vector in the direction of $\vec{u}+\vec{v}$
b) $|3 \vec{u}+2 \vec{v}|$
9) An airplane is flying with airspeed $400 \mathrm{~km} / \mathrm{h}$ on a heading of 000°. There is a $50 \mathrm{~km} / \mathrm{h}$ wind blowing from the direction 090°. Calculate the ground velocity of the plane.
10) An object weighing 400 N is hanging from two ropes. The ropes make are attached to the ceiling. One makes an angle of 40° with the ceiling the other makes an angle of 50° with the ceiling.
11) A car is moving north at a speed of $25 \mathrm{~m} / \mathrm{s}$. A child in the back seat of the car throws a toy to the passenger in the front seat with a speed of $10 \mathrm{~m} / \mathrm{s}$ in the direction forward 50° right (relative to the car). Calculate the speed and direction of the toy relative to the road.
12) A sign weighing 98 N is suspended from the middle of a 4 m long chain. The ends of the chain are attached to a ceiling at points 3 m apart. Determine the tensions in the chains.
13) A canoeist leaves a dock and paddles her canoe at an angle across a river. The current is flowing at $3 \mathrm{~km} / \mathrm{h}$. The resulting velocity of the boat is $5.4 \mathrm{~km} / \mathrm{h}$ downstream, in a direction that forms a 15° angle with the adjacent shore. Determine the canoeist's velocity relative to the water.
14) A pilot flies with a heading of 160° and an airspeed of $250 \mathrm{~km} / \mathrm{h}$. There is a steady wind of $30 \mathrm{~km} / \mathrm{h}$ from the direction 030°. Calculate the ground velocity of the plane.
15) A pilot flies on a heading of $N 40^{\circ} \mathrm{W}$ with an airspeed of $240 \mathrm{~km} / \mathrm{h}$. Her actual ground velocity is $250 \mathrm{~km} / \mathrm{h}$ at a bearing of $N 42^{\circ} \mathrm{W}$.
16) Determine the vertical and horizontal components of each force.
a) 30 N at an inclination of 40° counter clockwise from the horizontal
b) $50 \mathrm{~m} / \mathrm{s}, 50^{\circ}$ clockwise from the horizontal
17) A 500 N create is resting on a ramp that is inclined 8° counter clockwise from the horizontal. Resolve the weight into two rectangular components, one parallel to the ramp and the other perpendicular to the ramp.
18) A person is pushing on the handle of a lawn mower with a force of 400 N acting 30° clockwise below the horizontal. What is the magnitude of the force pushing the lawn mower horizontally? Pushing down on the lawn mower?
19) A plane on takeoff has a velocity of $300 \mathrm{~km} / \mathrm{h}$ at an angle of 10° up from the horizontal. Calculate the rate at which the plane is climbing and its horizontal speed to one decimal place.

Unit 4 Answers

1)a) $S 50^{\circ} \mathrm{E}$ b) $\mathrm{N} 30^{\circ} \mathrm{W}$
2)a) 200° b) 43°
3)a) $\overrightarrow{E F}, \overrightarrow{G H}, \overrightarrow{I K}$ b) $\overrightarrow{C D}, \overrightarrow{E F}, \overrightarrow{G H}, \overrightarrow{I K}$ c) $\overrightarrow{E F}, \overrightarrow{I K}$ d) $\overrightarrow{C D}$
4)a)

b)

c)

d)

e)

f)

5)a) \vec{w} b) $-\vec{u}$ c) $-2 \vec{w}$ d) $\vec{w}-\vec{u}$ e) $2 \vec{w}-\vec{u}$
6)a) $\overrightarrow{E B}$ or $\overrightarrow{H C}$ b) $\overrightarrow{A F}$ or $\overrightarrow{D G}$ c) $\overrightarrow{A F}$ or $\overrightarrow{D G}$ d) $\overrightarrow{E C}$ e) $\overrightarrow{A G}$ f) $\overrightarrow{E F}$
$\begin{array}{lll}\text { 7)a) } \frac{1}{3} \vec{v} & \text { b) } \frac{2}{3} \vec{v}+\vec{u} & \text { c) }-\vec{u}+\frac{2}{3} \vec{v}\end{array} \quad$ d) $\vec{u}+\frac{1}{6} \vec{v}$
8)a) $\frac{1}{\sqrt{169+60 \sqrt{3}}}(\vec{u}+\vec{v}) \quad$ b) $\sqrt{1396+360 \sqrt{3}}$
9) $403 \mathrm{~km} / \mathrm{h} N 7.1^{\circ} \mathrm{W}$
10) For the shorter rope: 306.4 N ; for the longer rope: 257.1 N
11) $32 \mathrm{~m} / \mathrm{s}$ forward 14° right
12) 74.1 N
13) $2.6 \mathrm{~km} / \mathrm{h}$ at an angle of 32.2° with the adjacent shore
14) $270 \mathrm{~km} / \mathrm{h} S 15^{\circ} \mathrm{E}$
15) $13 \mathrm{~km} / \mathrm{h} N 82^{\circ} \mathrm{W}$
16)a) $\vec{F}_{h}=23 \mathrm{~N} ; \vec{F}_{v}=19 \mathrm{~N}$ b) $\vec{F}_{h}=32 \mathrm{~m} / \mathrm{s} ; \vec{F}_{v}=38 \mathrm{~m} / \mathrm{s}$
17) $|\vec{n}|=495 \mathrm{~N} ;|\vec{f}|=70 \mathrm{~N}$
18) horizontal force: 346 N ; downward force: 200 N
19) $\vec{v}_{h}=52.1 \mathrm{~km} / \mathrm{h} ; \vec{v}_{v}=295.4 \mathrm{~km} / \mathrm{h}$

