1) Write the coordinates of each Cartesian vector. Then find its magnitude.

2) Given $\vec{u}=[2,-1]$ and $\vec{v}=[5,-7]$, evaluate each expression.
a) $2 \vec{v}$
b) $\vec{u}-\vec{v}$
c) $3 \vec{u}+5 \vec{v}$
d) $4 \vec{u}-2 \vec{v}$
3) Consider the points $A(2,-7), B(-4,5)$ and $C(6,8)$.
a) Determine $\overrightarrow{A C}$
b) Determine $|\overrightarrow{A B}|$
c) Determine the perimeter of $\triangle A B C$
4) Determine the value of k so that the vectors in each pair are collinear.
a) $\vec{u}=[2, k], \vec{v}=[-12,30]$
b) $\vec{u}=[-4,6], \vec{v}=[30, k]$
5) Calculate the dot product of each pair of vectors.
a)

b)

c) $\vec{u}=[-8,9]$ and $\vec{v}=[1,-7]$
d) $\vec{u}=-5 \hat{\imath}+11 \hat{\jmath}$ and $\vec{v}=7 \hat{\imath}-2 \hat{\jmath}$
6) Write a 250 N force applied at 60° to the horizontal as a Cartesian vector.
7) Evaluate, given vectors $\vec{u}=[2,-3]$ and $\vec{v}=[3,1]$.
a) $3 \vec{u}+2 \vec{v}$
b) $|\vec{u}|$
c) $\vec{u} \cdot \vec{v}$
d) $|\vec{u}+\vec{v}|$
8) Calculate the angle θ between the vectors.
a) $\vec{u}=[-1,8]$ and $\vec{v}=[3,-5]$
b) $\vec{u}=[3,-7]$ and $\vec{v}=[6,-1]$
9) Determine the projection of \vec{u} on \vec{v}.
a) $|\vec{u}|=95$ and $|\vec{v}|=275$, and the angle between \vec{u} and \vec{v} is 13°.
b) $\vec{u}=[6,-5]$ and $\vec{v}=[7,-11]$
10) For vectors $\vec{c}=[2,-7]$ and $\vec{d}=[9,12]$
a) determine the magnitude of the projection of \vec{c} on \vec{d}
b) determine the vector projection of \vec{c} on \vec{d}
11) Determine the work done by each \vec{F}, in Newtons, for an object moved along the vector, \vec{d}, in metres.
a) $\vec{F}=[18,23]$ and $\vec{d}=[9,12]$
b)

12) Determine if $\triangle P Q R$ with vertices $P(-5,3), Q(-7,8)$ and $R(3,12)$ is a right triangle. If so, identify the right angle.
13) Determine the exact magnitude of the vector $\overrightarrow{A B}$ joining $\mathrm{A}(3,8,-11)$ and $\mathrm{B}(7,-3,15)$.
14) For each of the following calculate the angle between the two vectors.
a) $[0,1,-2]$ and $[-3,1,4]$
b) $[1.5,20,0]$ and $[-20,1,10]$
15) Given $\vec{c}=[-6,4,0], \vec{d}=[0,-5,-7]$, and $\vec{e}=[3,1,2]$.
a) $10 \vec{c}-10 \vec{d}$
b) $2 \vec{c} \cdot 3 \vec{d}-2 \vec{c} \cdot 4 \vec{e}$
c) $(3 \vec{d}-4 \vec{e}) \cdot 2 \vec{c}$
d) $\vec{c} \times \vec{d}$
e) $\vec{d} \times \vec{e}$
f) $\vec{c} \times \vec{c}$
16) If $\vec{u}=[5,7,9]$ is orthogonal to $\vec{v}=[1, t, 1]$, determine t.
17) Determine the area of the parallelogram bound by the vectors $\vec{a}=[7,11,4]$ and $\vec{b}=[3,-2,5]$.
18) A triangle has vertices $A(2,5,-1), B(4,1,-3)$, and $C(-5,-6,4)$. Find the area of the triangle.
19) Calculate the area of the parallelogram $A B C D$ where $A(4,6), B(5,6), C(11,15)$, and $D(-2,-3)$
20) Find the volume of the parallelepiped defined by $\vec{a}=[1,0,-4], \vec{b}=[8,-7,9]$, and $\vec{c}=[2,3,-4]$
21) A 525 N force is applied to the end of a 130 cm wrench and makes an angle of 25° with the handle of the wrench. What is the torque on the bolt at the other end of the wrench if the force is applied in a clockwise direction?
22) Find a unit vector parallel to $\vec{p}=[-8,2,-3]$
23) Given $\vec{a}=[3,4,-2], \vec{b}=[2,-7,1]$, and $\vec{c}=[-6,5,4]$, evaluate each expression
a) $\vec{a}+\vec{c} \times \vec{b}$
b) $(\vec{a}+\vec{c}) \times \vec{b}$
c) $|-2 \vec{b} \times \vec{c}|$
24) A storage box is dragged 7 m along a smooth, level floor by a $43-\mathrm{N}$ force, applied at 38° to the floor. Then, it is pulled 3.5 m up a ramp inclined at 24° to the horizontal, using the same force. The storage box is then dragged a further 6 m along a level platform using the same force again. Determine the total work done in moving the storage box.
25) A rock climber pulls himself 21 m up the side of a cliff with a force of 5.2 N , at an angle of 11.2° to the vertical. What is the work done?

Answers:

1) $\overrightarrow{A B}=[3,-5],|\overrightarrow{A B}|=\sqrt{34} ; \overrightarrow{C D}=[9,7],|\overrightarrow{C D}|=\sqrt{130} ; \overrightarrow{E F}=[-5,4],|\overrightarrow{E F}|=\sqrt{41} ; \overrightarrow{I J}=[-9,0],|\overrightarrow{I J}|=9 ; \overrightarrow{K L}=[0,9],|\overrightarrow{K L}|=9 ; \overrightarrow{M N}=$ $[8,-5],|\overrightarrow{M N}|=\sqrt{89}$
2)a) $[10,-14]$ b) $[-3,6]$ c) $[31,-38]$ d) $[-2,10]$
3)a) $[4,15]$ b) $6 \sqrt{5}$ units c) 39.4 units
4)a) $-5 \quad$ b) -45
2) a) 70.88 b) -27833.94 c) -71 d) -57
3) $[125,216.5]$
4) a) $[12,-7]$ b) $\sqrt{13}$ c) 3 d) $\sqrt{29}$
8)a) $\theta=156.2^{\circ}$ b) $\theta=57^{\circ}$
$\begin{array}{lll}\text { 9)a) } 92.57 \hat{v} & \text { b) } \frac{97}{170}[7,-11]\end{array}$
10)a) 4.4 b) $\left[-\frac{66}{25},-\frac{88}{25}\right]$
11)a) 438 J b) 826.59 J
5) Yes; angle Q
6) $\sqrt{813}$
14)a) 127.9° b) 91.3°
15)a) $[-60,90,70]$ b) -8 c) -8 d) $[-28,-42,30]$ e) $[-3,-21,15]$ f) $\overrightarrow{0}$
7) $t=-2$
8) $\sqrt{6707}$ units 2
9) $\sqrt{1070}$ units 2
10) 9 units 2
11) 151 units 3
12) 288.4 Nm (in to the material; bolt is being tightened)
13) $\left[-\frac{8}{\sqrt{77}}, \frac{2}{\sqrt{77}},-\frac{3}{\sqrt{77}}\right]$
$\begin{array}{lll}\text { 23)a) }[36,18,30] & \text { b) }[23,7,3] & \text { c) } 2 \sqrt{2309}\end{array}$
14) 586.5 J
15) 107 J
