Chapter 7

Geometric Relationships

Intro

Part 1: Classifying Triangles

Classifying Using Side Lengths

Scalene Triangle

- no equal sides or angles

Isosceles Triangle

- 2 equal sides
- 2 equal angles

Equilateral Triangle

- 3 equal sides
- 3 equal angles

Classifying Using Angle Measures

Acute Triangle
 - 3 acute angles (less than 90 degrees)

Right Triangle

- one right angle (90 degrees)

Obtuse Triangle

- one obtuse angle
(between 90 and 180 degrees)

Example 1

Classify Each Triangle Using its Side Lengths
a)

b)

Isosceles
2 equal sides
Scalene
No equal sides

Example 2

Classify Each Triangle in Two ways Using its Angle Measures
a)

b)

Equilateral (3 equal angles)
Isosceles (2 equal angles)

Acute (all angles <90)

Obtuse (1 angle > 90)

Part 2: Classifying Polygons

A polygon is a closed figure formed by three or more line segments.

A regular polygon has all sides equal and all angles equal.

Number of Sides	Name
3	triangle
4	quadrilateral
5	pentagon
6	hexagon

Some quadrilaterals have special names.
A regular quadrilateral is a square.
square

An irregular quadrilateral may be a rectangle, rhombus, parallelogram, or trapezoid

Example 3

Classify each polygon according to its number of sides and whether it is regular or irregular.
a)

b)

Irregular Pentagon
Regular Hexagon

Example 4

Classify each quadrilateral.
a)

b)

Parallelogram

Part 3: Angle Properties

Opposite Angles:

- When 2 angles intersect, the opposite angles are equal.

Supplementary Angles:

- angles that add to 180 degrees
- angles on a straight line are
 supplementary

Complementary Angles:

- angles that add to 90 degrees

Part 4: Parallel Line Theorems

When a transversal crosses parallel lines, many pairs of angles are related..

Alternate Interior Angles are equal - Z pattern

Alternate Exterior Angles are equal

Corresponding Angles are equal - F pattern

Co-Interior Angles add to 180 - C pattern

Part 6: Triangle Theorems

The sum of the interior angles of a triangle is $\mathbf{1 8 0}$ degrees.

The exterior angle is equal to the sum of the 2 opposite interior angles.

Example 5
Find the measure of the third angle in each triangle...
a)

$$
\begin{aligned}
\angle Z & =180-58-72 \\
& =50^{\circ}
\end{aligned}
$$

b)

$$
\begin{aligned}
\angle R & =180-90-35 \\
& =55
\end{aligned}
$$

Example 6
Find the measure of the angles a, b, and c. Give reasons for your answers...
a)

$$
\begin{aligned}
& \angle a=75^{\circ} \quad \text { (opposite angle) } \\
& \angle c=75^{\circ} \quad \text { (alternate interior) } \\
& \angle b=75^{\circ} \text { (correspondin gangle) }
\end{aligned}
$$

b)

$\angle c=180-40=140^{\circ}$ (supplementary)
$\angle b=40^{\circ}$ (opposite angle)
$\angle a=180-\angle c=40^{\circ}$ (co-interior)

7.1- Angle Relationships in Triangles

Interior and Exterior Angles

Interior Angle - angle formed on the inside of a polygon by two sides meeting at a vertex.

Exterior Angle - angle formed on the outside of a geometric shape by extending one of the sides past a vertex.

You must remember....

Supplementary Angles:

- angles that add to 180 degrees
- angles on a straight line are supplementary

The sum of the interior angles of a triangle is $\mathbf{1 8 0}$ degrees.

New Exterior Angle Rules...

The exterior angle is equal to the sum of the 2 opposite interior angles.

The sum of the exterior angles of a triangle is 360 degrees.

Example 1
Find the measures of the exterior angles in $\triangle \mathrm{ABC}$

Note: at vertex A and B, the interior and exterior angles are supplementary angles (form an angle of 180 degrees)

$$
\angle \mathbf{D A B}=180-85=95^{\circ} \text { (supplementary) }
$$

$$
\angle \mathbf{E B C}=180-50=130^{\circ} \quad \text { (supplementary) }
$$

$\angle A C F$

Method 1:

Since the exterior angle at a vertex of a triangle is equal to the sum of the interior angles at the other two vertices...

$$
\angle A C F=85+50=135^{\circ}
$$

Method 2:

Since the sum of the exterior angles of a triangle is 360 degrees...

$$
\angle A C F=360-130-95=135^{\circ}
$$

The measures of the three exterior angles are:

$$
\begin{aligned}
& \angle \mathrm{DAB}=95^{\circ} \\
& \angle \mathrm{EBC}=130^{\circ} \\
& \angle \mathrm{ACF}=135^{\circ}
\end{aligned}
$$

Example 2 Find the measure of the indicated angle

$$
\begin{aligned}
& \angle V U T+50=120 \\
& \angle V U T=120-50 \\
& \angle V U T=70^{\circ}
\end{aligned}
$$

Example 3 Find the measure of the indicated angle

$$
\begin{aligned}
& \angle T U Y=50+70 \\
& \angle T U Y=120^{\circ}
\end{aligned}
$$

Example 4

Find the measure of the exterior angle at vertex X .

$$
\begin{aligned}
& ?=360-120-140 \\
& ?=100^{\circ}
\end{aligned}
$$

Example 5

What is the measure of each exterior angle of an equilateral triangle?

All angles in an equilateral triangle are EQUAL.

Therefore all three interior angles are...

$$
=\frac{180}{3}=60^{\circ}
$$

At each vertex, the interior angle and exterior angle are supplementary, meaning they sum to 180°.

Therefore all three exterior angles are $\ldots=180-60=120^{\circ}$

7.2 Angle Relationships in Quadrilaterals

Angle Relationships in Quadrilaterals

The sum of the interior angles of a quadrilateral is 360 degrees.
The sum of the exterior angles of a quadrilateral is also 360 degrees.

Interior angles:
$a+b+c+d=360^{\circ}$

Exterior angles:

$$
w+x+y+z=360^{\circ}
$$

Angle Relationships in Parallelograms

Adjacent angles in a parallelogram are supplementary (add to 180).
Opposite angles in a parallelogram are equal.

Adjacent angles:
$w+x=180$
$w+y=180$
$y+z=180$
$z+x=180$

Opposite angles:
$w=z$
$x=y$

■

Example 1 Find the measure of the unknown angle

Example 2 Find the measure of the unknown angle

$$
\begin{aligned}
& y+105+50+88=360 \\
& y=360-105-50-88 \\
& y=117^{\circ}
\end{aligned}
$$

Example 3 Find the measure of the unknown angle

$$
x=360-90-90-70
$$

$$
x=110^{\circ}
$$

Example 4 Find the measure of the unknown angle

$125^{\circ} \sum_{x} \quad$| $x+125+95+90=360$ |
| :--- |
| $x=360-125-95-90$ |
| $x=50^{\circ}$ |

Example 5
Find the measure of the unknown angle

Opposite angles are equal in parallelograms

Example 6 Find the measure of the unknown angle

Adjacent angles are supplementary in a parallelogram

Example 7
Find the measure of the unknown angle

Example 8 Find the measure of the unknown angle

$$
\begin{aligned}
& ?+70=180 \quad \text { (adjacent) } \\
& ?=180-70 \\
& ?=110^{\circ}
\end{aligned}
$$

7.3 Angle Relationships in Polygons

Types of Polygons

Convex Polygon: All interior angles measure less than 180 degrees.

- no part of any line segment joining two points on
 the polygon goes outside the polygon.

Concave Polygon: Can have interior angles greater than 180 degrees.

- parts of some line segments joining two points
 on the polygon go outside the polygon.

Regular Polygon: All sides are equal and all interior angles are equal.

Angle Properties in Polygons

The sum of the exterior angles of a convex polygon is 360 degrees.

For a polygon with n sides, the sum of the interior angles, in degrees, is $180(n-2)$

For a regular polygon with n sides, the measure of each interior angle is equal to: $\frac{180(n-2)}{n}$

For a regular polygon with n sides, the measure of each exterior angle is equal to: $\frac{360}{n}$

Example 1
Calculate the sum of the interior angles of an octagon

$$
8 \text { sides }
$$

$$
\begin{aligned}
\text { sum of interior angles } & =180(n-2) \\
& =180(8-2) \\
& =180(6) \\
& =1080^{\circ}
\end{aligned}
$$

Example 2
Calculate the measure of each of the interior angles of a regular octagon.

$$
\begin{aligned}
\text { interior angle } & =\frac{180(n-2)}{n} \\
& =\frac{180(8-2)}{8} \\
& =\frac{1080}{8} \\
& =135^{\circ}
\end{aligned}
$$

Example 3
Calculate the measure of each of the exterior angles of a regular octagon.

$$
\begin{aligned}
\text { exterior angle } & =\frac{360}{n} \\
& =\frac{360}{8} \\
& =45^{\circ}
\end{aligned}
$$

Example 4
How many sides does a polygon have if each of its interior angles measure 140 degrees?

$$
\begin{aligned}
& \text { interior angle }=\frac{180(n-2)}{n} \\
& 140=\frac{180(n-2)}{n} \\
& 140 n=180(n-2) \\
& 140 n=180 n-360 \\
& 360=180 n-140 n \\
& 360=\frac{40 n}{40} \\
& 9=n
\end{aligned}
$$

The regular polygon has 9 sides.

Example 5
The measure of one of the exterior angles of a regular polygon is 30 degrees. How many sides does it have?

$$
\text { exterior angle }=\frac{360}{n}
$$

$$
\begin{aligned}
& 30=\frac{360}{n} \\
& 30 n=360 \\
& n=\frac{360}{30} \\
& n=12
\end{aligned}
$$

Example 6

Five angles of hexagon have measures $100^{\circ}, 110^{\circ}, 120^{\circ}, 130^{\circ}$, and 140°. What is the measure of the sixth angle?

$$
\begin{aligned}
\text { sum of interior angles } & =180(n-2) \\
& =180(6-2) \\
& =720^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
6^{\text {th }} \text { angle } & =720-100-110-120-130-140 \\
& =120^{\circ}
\end{aligned}
$$

Example 7 Solve for x

$$
\begin{gathered}
x+110+100+2 x+138=540 \\
3 x=540-110-100-138 \\
3 x=192 \\
x=\frac{192}{3} \\
x=64^{\circ}
\end{gathered}
$$

Complete the following chart and then complete the worksheet

Polygon	Number of Sides	Sum of Interior Angles	Sum of Exterior Angles
Triangle	3	$180(3-2)=180^{\circ}$	360°
Quadrilateral	4	$180(4-2)=360^{\circ}$	360°
Pentagon	5	$180(5-2)=540^{\circ}$	360°
Hexagon	6	$180(6-2)=720^{\circ}$	360°
Heptagon	7	$180(7-2)=900^{\circ}$	360°
Octagon	8	$180(8-2)=1080^{\circ}$	360°
Enneagon	9	$180(9-2)=1260^{\circ}$	360°
Decagon	10	$180(10-2)=1440^{\circ}$	360°

