# Chapter 7

# **Geometric Relationships**

# <u>Intro</u>

### Part 1: Classifying Triangles

#### **Classifying Using Side Lengths**

#### Scalene Triangle

- no equal sides or angles



#### **Isosceles Triangle**

- 2 equal sides
- 2 equal angles

#### **Equilateral Triangle**

- 3 equal sides
- 3 equal angles





#### **Classifying Using Angle Measures**

Acute Triangle - 3 acute angles (less than 90 degrees)





**Obtuse Triangle** - one obtuse angle





# (between 90 and 180 degrees)

### **Example 1**

Classify Each Triangle Using its Side Lengths



Classify Each Triangle in Two ways Using its Angle Measures



Acute (all angles < 90)

**Obtuse** (1 angle > 90)

### Part 2: Classifying Polygons

A *polygon* is a closed figure formed by three or more line segments.

A *regular polygon* has all sides equal and all angles equal.

| Number of Sides | Name          |  |
|-----------------|---------------|--|
| 3               | triangle      |  |
| 4               | quadrilateral |  |
| 5               | pentagon      |  |
| 6               | hexagon       |  |

Some quadrilaterals have special names.

A regular quadrilateral is a square.



An irregular quadrilateral may be a *rectangle*, *rhombus*, *parallelogram*, or *trapezoid* 



### **Example 3**

Classify each polygon according to its number of sides and whether it is regular or irregular.



Classify each quadrilateral.





Parallelogram

Rhombus

#### **Part 3: Angle Properties**

# Opposite Angles: - When 2 angles intersect, the opposite angles are equal. Supplementary Angles: - angles that add to 180 degrees - angles on a straight line are supplementary Complementary Angles: - angles that add to 90 degrees - angles that add to 90 degrees

#### Part 4: Parallel Line Theorems

When a transversal crosses parallel lines, many pairs of angles are related...

Alternate Interior Angles are equal - Z pattern

Alternate Exterior Angles are equal

**Corresponding Angles** are equal - F pattern

**Co-Interior Angles** add to 180 - C pattern



#### Part 6: Triangle Theorems

The sum of the **interior angles** of a triangle is **180** degrees.



The **exterior angle** is equal to the sum of the 2 opposite interior angles.



Find the measure of the third angle in each triangle...



### Example 6

Find the measure of the angles *a*, *b*, and *c*. Give reasons for your answers...



# 7.1 - Angle Relationships in Triangles

### **Interior and Exterior Angles**

**Interior Angle -** angle formed on the inside of a polygon by two sides meeting at a vertex.

**Exterior Angle -** angle formed on the outside of a geometric shape by extending one of the sides past a vertex.



You must remember....

#### **Supplementary Angles:**

angles that add to 180 degrees angles on a straight line are supplementary



The sum of the **interior angles** of a triangle is **180** degrees.



#### New Exterior Angle Rules...

The **exterior angle** is equal to the sum of the 2 opposite interior angles.

The sum of the **exterior angles** of a triangle is 360 degrees.



Find the measures of the exterior angles in  $\triangle ABC$ 



**Note:** at vertex A and B, the interior and exterior angles are supplementary angles (form an angle of 180 degrees)

$$\angle DAB = 180 - 85 = 95^{\circ} (supplementary)$$

$$\angle EBC = 180 - 50 = 130^{\circ}$$
 (supplementary)

### ∠ACF

#### Method 1:

Since the exterior angle at a vertex of a triangle is equal to the sum of the interior angles at the other two vertices...

## LACF = 85+50 = 135°

**Method 2:** Since the sum of the exterior angles of a triangle is 360 degrees...

# $\angle ACF = 360 - 130 - 95 = 135^{\circ}$

The measures of the three exterior angles are:

$$\angle DAB = 95^{\circ}$$
$$\angle EBC = 130^{\circ}$$
$$\angle ACF = 135^{\circ}$$

**Example 2** Find the measure of the indicated angle



**Example 3** Find the measure of the indicated angle



Find the measure of the exterior angle at vertex X.



### **Example 5**

What is the measure of each exterior angle of an equilateral triangle?



At each vertex, the interior angle and exterior angle are supplementary, meaning they sum to  $\underline{|g_0^{\circ}}$ .

Therefore all three exterior angles are... =  $|80 - 60 = |20^\circ$ 

## 7.2 Angle Relationships in Quadrilaterals

#### **Angle Relationships in Quadrilaterals**

The sum of the **interior** angles of a quadrilateral is 360 degrees.

The sum of the **exterior** angles of a quadrilateral is also 360 degrees.

W Z

Interior angles:  $a + b + c + d = 360^{\circ}$ 

Exterior angles:  $w + x + y + z = 360^{\circ}$ 

#### **Angle Relationships in Parallelograms**

Adjacent angles in a parallelogram are supplementary (add to 180).Opposite angles in a parallelogram are equal.



| Adjacent angles                                          | : |
|----------------------------------------------------------|---|
| w + x = 180<br>w + y = 180<br>y + z = 180<br>z + x = 180 |   |

| <b>Opposite angles:</b> |
|-------------------------|
| w = z $x = y$           |

۵

**Example 1** 

Find the measure of the unknown angle



X+56+95+98 = 360 X = 360-56-95-98 X = 111°



Find the measure of the unknown angle



X+90+90+70 = 360 X = 360-90-90-70 X = 110°







Opposite angles are equal in parallelograms

**Example 6** Find the measure of the unknown angle



Adjacent angles are supplementary in a parallelogram







**Example 8** Find the measure of the unknown angle



 $\rightarrow$  ?+70 = 180 (adjacent)  $\rightarrow$  ?= 180 -70 ?= 110°

# **7.3 Angle Relationships in Polygons**

#### **Types of Polygons**

**Convex Polygon:** All interior angles measure less than 180 degrees.

- no part of any line segment joining two points on the polygon goes outside the polygon.

**Concave Polygon:** Can have interior angles greater than 180 degrees.

- parts of some line segments joining two points on the polygon go outside the polygon.

**Regular Polygon:** All sides are equal and all interior angles are equal.







#### **Angle Properties in Polygons**

The sum of the exterior angles of a convex polygon is 360 degrees.

For a polygon with *n* sides, the sum of the interior angles, in degrees, is 180(n - 2)

n

For a regular polygon with *n* sides, the measure of each interior angle is equal to: 180(n-2)

For a regular polygon with *n* sides, the measure of each exterior angle is equal to:  $\frac{360}{n}$ 

**Example 1** 

180(n-2)

Calculate the sum of the interior angles of an octagon

8 sides

Sum of interior angles = 180 (n-2) = 180 (8-2) = 180 (6) = (080°

 $\frac{180(n-2)}{n}$ 

Calculate the measure of each of the interior angles of a *regular* octagon.

interior angle = 
$$\frac{180(n-2)}{n}$$
  
=  $\frac{180(8-2)}{8}$   
=  $\frac{1080}{8}$   
= 135°

# Example 3

Calculate the measure of each of the exterior angles of a *regular* octagon.

$$exterior angle = \frac{360}{n}$$
$$= \frac{360}{8}$$
$$= 45^{\circ}$$

# $\frac{360}{n}$

How many sides does a polygon have if each of its interior angles measure 140 degrees?

interior angle = 
$$180(n-2)$$
  
 $140 = 180(n-2)$   
 $140 n = 180(n-2)$   
 $140 n = 180(n-2)$   
 $140 n = 180 n - 360$   
 $360 = 180 n - 140 n$   
 $360 = 40 n$   
 $40 - 40$   
 $9 = n$   
The regular polygon has 9 sides.

# Example 5

The measure of one of the exterior angles of a regular polygon is 30 degrees. How many sides does it have?

exterior angle = 
$$\frac{360}{n}$$
  
 $30 = \frac{360}{n}$   
 $30n = 360$   
 $n = \frac{360}{30}$   
 $n = 12$   
The regular polygon  
has 12 sides.

# Example 6 ,6 sides

Five angles of the hexagon have measures 100°, 110°, 120°, 130°, and 140°. What is the measure of the sixth angle?

$$6^{\text{th}}$$
 angle = 720 - 100 - 110 - 120 - 130 - 140  
= 120°



 $\chi + 110 + 100 + 2x + 138 = 540$  3x = 540 - 110 - 100 - 138 3x = 192  $\chi = \frac{192}{3}$  $\chi = 64^{\circ}$  Complete the following chart and then complete the worksheet

| Polygon       | Number<br>of Sides | Sum of Interior Angles | Sum of<br>Exterior<br>Angles |
|---------------|--------------------|------------------------|------------------------------|
| Triangle      | 3                  | 180(3-2) = 180°        | 360°                         |
| Quadrilateral | 4                  | 180(4-2) = 360°        | 360°                         |
| Pentagon      | 5                  | 180(5-2) = 540°        | 360°                         |
| Hexagon       | 6                  | 180(6-2) = 720°        | 360                          |
| Heptagon      | 7                  | 180 (7-2) = 900°       | 360°                         |
| Octagon       | 8                  | (80 (8 -2-) = 1080°    | 360°                         |
| Enneagon      | 9                  | 180 (9 - 2) = 1260°    | 360°                         |
| Decagon       | 10                 | 180(10-2) = 1440°      | 360°                         |