
Unit 3 – Geometry

Chapter 7 – Geometric Relationships Chapter 8 – Measurement Relationships Chapter 9 – Optimizing Measurements

MPM1D

"That's fine, but you haven't told us the most important part - what's in it?!"

Chapter 7 Outline

Section	Subject	Homework Notes	Lesson and Homework Complete (initial)
7.0	Geometry Intro		
7.1	Angle Relationships in Triangles		
7.2	Angle Relationships in Rectangles		
7.3	Angle Relationships in Polygons		

<u>Unit Performance</u>						
None	Some	Most	All			
None	Some	All				
Test Mark (%):						
Notes to yourself to help with exam preparation:						
	None	None Some None Some	None Some Most None Some All			

Chapter 8 Outline

Section	Subject	Homework Notes	Lesson and Homework Complete (initial)
8.1	Pythagorean Theorem		
8.2	Perimeter and Area of Composite Figures		
8.3a	Volume of Prisms and Pyramids		
8.3b	Surface Area of Prisms and Pyramids		
8.4/8.5	Volume and Surface Area of Cones		
8.6/8.7	Volume and Surface Area of Spheres		

<u>Unit Performance</u>						
Homework Completion:	None	Some	Most	All		
Days absent:						
Test Review Complete?	None	Some	All			
Assignment Mark (%):						
Test Mark (%):						
Notes to yourself to help with exam preparation:						

Chapter 9 Outline

Section	Subject	Homework Notes	Lesson and Homework Complete (initial)
9.1	Perimeter and Area Relationships of a Rectangle		
9.2	Minimize the Surface Area of a Square Based Prism		
9.3	Maximize the Volume of a Square Based Prism		
9.4	Maximize the Volume of a Cylinder		
	Culminating Assignment		

<u>Unit Performance</u>						
Homework Completion:	None	Some	Most	All		
Days absent:						
Test Review Complete?	None	Some	All			
Assignment Mark (%):						
Test Mark (%):						
Notes to yourself to help with exam preparation:						

Section 7.0 – Geometry Intro

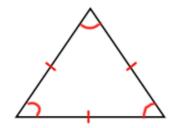
MPM1D Iensen

Part 1: Classifying Triangles

Classify Using Side Lengths:

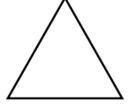
Scalene Triangle

- no equal sides or angles


Isosceles Triangle

- 2 equal sides
- 2 equal angles

Equilateral Triangle


- 3 equal sides
- 3 equal angles

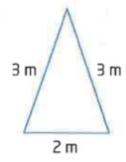
Classify Using Angle Measures:

Acute Triangle

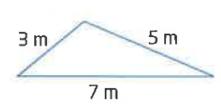
- 3 acute angles (less than 90 degrees)

Right Triangle

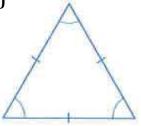
- one right angle (90 degrees)


Obtuse Triangle

- one obtuse angle (between 90 and 180 degrees)



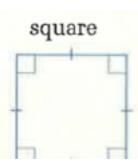
Example 1: Classify Each Triangle Using its Side Lengths



b)

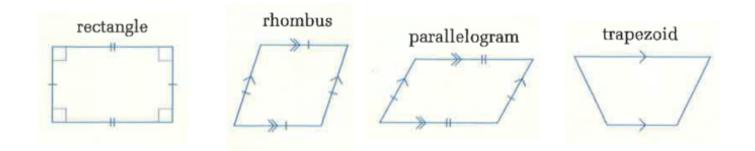
Example 2: Classify Each Triangle in Two ways using its angle measures

a)

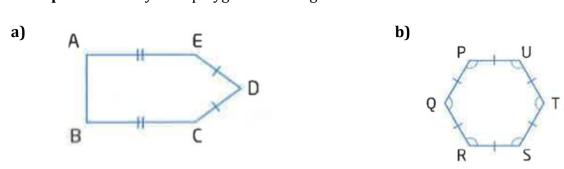

Part 2: Classifying Polygons

A ${\it polygon}$ is a closed figure formed by three or more line segments.

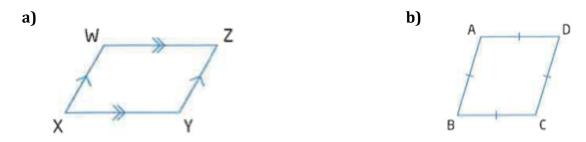
A *regular polygon* has all sides equal and all angles equal.


Some **quadrilaterals** have special names.

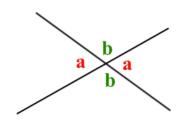
A regular quadrilateral is a square.



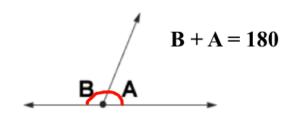
Number of Sides	Name
3	triangle
4	quadrilateral
5	pentagon
6	hexagon


An irregular quadrilateral may be a *rectangle*, *rhombus*, *parallelogram*, or *trapezoid*

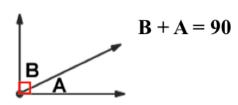
Example 3: Classify each polygon according to its number of sides and whether it is regular or irregular.


Example 4: Classify each quadrilateral

Part 3: Angle Properties


Opposite Angles:

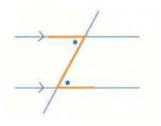
- When 2 angles intersect, the opposite angles are equal.


Supplementary Angles:

- angles that add to 180 degrees
- angles on a straight line are supplementary

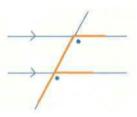
Complementary Angles:

- angles that add to 90 degrees

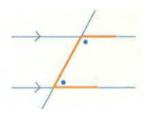


Part 4: Parallel Line Theorems

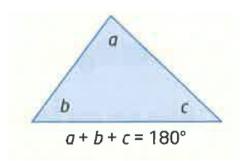
When a transversal crosses parallel lines, many pairs of angles are related...


Alternate Interior Angles are equal

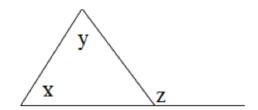
- Z pattern


Corresponding Angles are equal

- F pattern

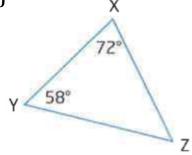

 $\textbf{Co-Interior Angles} \ add \ to \ 180$

- C pattern

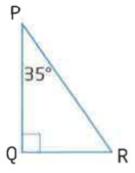


Part 6: Triangle Theorems

The sum of the **interior angles** of a triangle is **180** degrees.

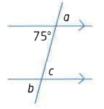


The **exterior angle** is equal to the sum of the 2 opposite interior angles.

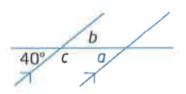


Example 5: Find the measure of the third angle in each triangle...

a)



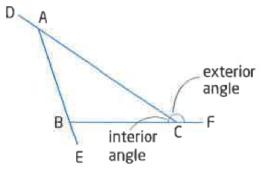
b)



Example 6: Find the measure of the angles a, b, and c. Give reasons for your answers...

a)

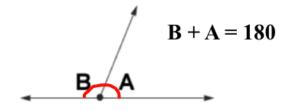
b)

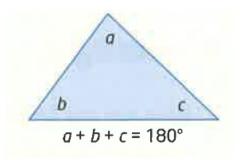

Section 7.1 – Angle Relationships in Triangles

MPM1D Iensen

Interior and Exterior Angles

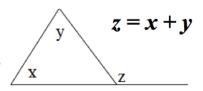
Interior Angle - angle formed on the inside of a polygon by two sides meeting at a vertex.


Exterior Angle - angle formed on the outside of a geometric shape by extending one of the sides past a vertex.

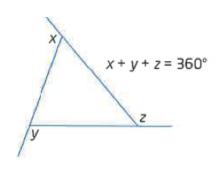

You Must Remember...

Supplementary Angles:

- angles that add to 180 degrees
- angles on a straight line are supplementary

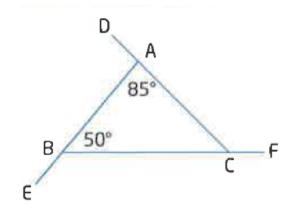


The sum of the **interior angles** of a triangle is **180** degrees.



New Exterior Angle Rules...

The **exterior angle** is equal to the sum of the 2 opposite interior angles.


The sum of the **exterior angles** of a triangle is 360 degrees.

Example 1: Find the measures of the exterior angles in $\triangle ABC$

Note: at vertex A and B, the interior and exterior angles are supplementary angles (form an angle of 180 degrees)

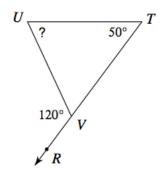
∠DAB:

∠EBC:

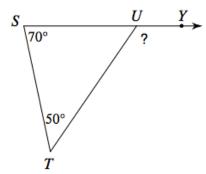
∠ACF:

Method 1: Since the exterior angle at a vertex of a triangle is equal to the sum of the interior angles at the other two vertices...

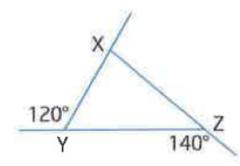
Method 2: Since the sum of the exterior angles of a triangle is 360 degrees...


The measures of the three exterior angles are:

∠DAB =


∠EBC =

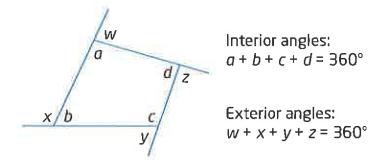
 $\angle ACF =$


Example 2: Find the measure of the indicated angle

Example 3: Find the measure of the indicated angle

Example 4: Find the measure of the exterior angle at vertex *X*

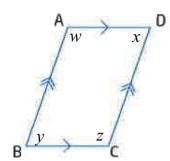
Example 5: What is the measure of each exterior angle of an equilateral triangle?	
All angles in an equilateral triangle are	/ /
Therefore all three interior angles are	
At each vertex, the interior angle and exterior angle are supplementary, meaning	they sum to
Therefore all three exterior angles are	


Section 7.2 – Angle Relationships in Quadrilaterals

MPM1D Iensen

Angle Relationships in Quadrilaterals

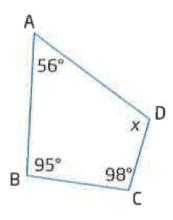
The sum of the **interior** angles of a quadrilateral is 360 degrees.


The sum of the **exterior** angles of a quadrilateral is also 360 degrees.

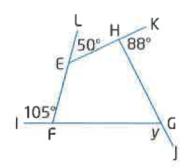
Angle Relationships in Parallelograms

Adjacent angles in a parallelogram are supplementary (add to 180).

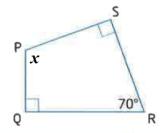
Opposite angles in a parallelogram are equal.

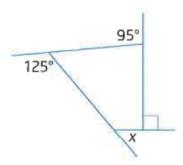

Adjacent angles:

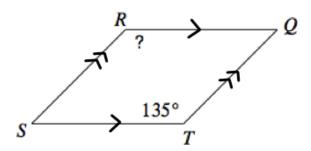
$$w + x = 180
 w + y = 180
 y + z = 180
 z + x = 180$$

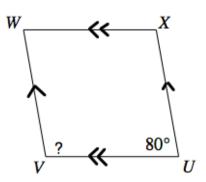

Opposite angles:

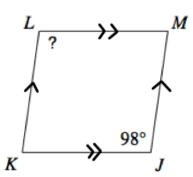
$$w = z$$
$$x = y$$

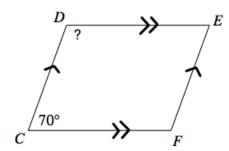

Example 1: Find the measure of the unknown angle


Example 2: Find the measure of the unknown angle


Example 3: Find the measure of the unknown angle


Example 4: Find the measure of the unknown angle


Example 5: Find the measure of the unknown angle


Example 6: Find the measure of the unknown angle

Example 7: Find the measure of the unknown angle

Example 8: Find the measure of the unknown angle

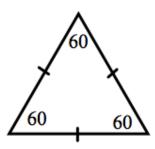
Section 7.3 – Angle Relationships in Polygons

MPM1D Jensen

Types of Polygons


Convex Polygon: All interior angles measure less than 180 degrees.

- no part of any line segment joining two points on the polygon goes outside the polygon.



Concave Polygon: Can have interior angles greater than 180 degrees.

- parts of some line segments joining two points on the polygon go outside the polygon.

Regular Polygon: All sides are equal and all interior angles are equal.

Angle Properties in Polygons

The sum of the exterior angles of a convex polygon is 360 degrees.

For a polygon with n sides, the sum of the interior angles, in degrees, is 180(n-2)

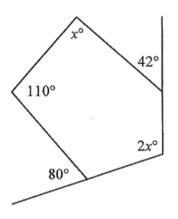
For a regular polygon with n sides, the measure of each interior angle is equal to: $\frac{180(n-2)}{n}$

For a regular polygon with *n* sides, the measure of each exterior angle is equal to: $\frac{360}{n}$

Example 2: Calculate the measure of each of the interior angles of a *regular* octagon.

180(n-2))
n	

Example 3: Calculate the measure of each of the exterior angles of a *regular* octagon.



Example 4: How many sides does a polygon have if each of its interior angles measure 140 degrees?

Example 5: The measure of one of the exterior angles of a regular polygon is 30 degrees. How many sides does it have?

Example 6: Five angles of a hexagon have measures 100°, 110°, 120°, 130°, and 140°. What is the measure of the sixth angle?

Example 7: Solve for x.

Complete the following chart and then complete the worksheet

Polygon	Number of Sides	Sum of Interior Angles	Sum of Exterior Angles
Triangle			
Quadrilateral			
Pentagon			
Hexagon			
Heptagon			
Octagon			
Enneagon			
Decagon			