```
W1 - Derivatives of Sine and Cosine
Unit 3
MCV4U
Jensen
```

1) Find the derivative with respect to x for each function.
a) $y=4 \sin x$
b) $f(x)=-3 \cos x$
c) $y=\cos x-\sin x$
d) $y=x^{2}-3 \sin x$
e) $y=\cos x+7 \pi \sin x-3 x$
f) $f(x)=\frac{\pi}{4} \cos x-\frac{\pi}{3} \sin x$
2) Find the equation of the line that is tangent to the function $y=\cos x$ and passes through the point $\left(\frac{\pi}{3}, \frac{1}{2}\right)$.
3) Find the equation of the line that is tangent to the function $y=-4 \sin x$ at $x=\frac{\pi}{4}$.
4) Determine an equation for the tangent to the function $f(x)=\tan x$ at $x=\frac{\pi}{4}$.
5) Find an equation of a line that is tangent to $y=2 \sin x$ and whose slope is a max value.

Answers:

1)a) $\frac{d y}{d x}=4 \cos x$ b) $f^{\prime}(x)=3 \sin x \quad$ c) $\frac{d y}{d x}=-\sin x-\cos x \quad$ d) $\frac{d y}{d x}=2 x-3 \cos x \quad$ e) $\frac{d y}{d x}=-\sin x+7 \pi \cos x-3$ f) $\frac{d y}{d x}=-\frac{\pi}{4} \sin x-\frac{\pi}{3} \cos x$
2) $y=-\frac{\sqrt{3}}{2} x+\frac{\pi \sqrt{3}+3}{6}$
3) $y=-2 \sqrt{2} x+\frac{\sqrt{2} \pi}{2}-2 \sqrt{2}$
4) $y=2 x+1-\frac{\pi}{2}$
5) $y=2 x$; note: there are an infinite number of solutions. The slope is at a max value at any $x=2 k \pi$ where $k \in \mathbb{Z}$. Depending on which x value you choose, you will get a different y-int.

